

Search for heavy charged Higgs bosons decaying into top and bottom quarks in the ATLAS detector

Adrian Salvador Salas (IFAE-BIST Barcelona) on behalf of the ATLAS collaboration 21st September 2021 Higgs Hunting 2021

Motivation

Institut de Física d'Altes Energies

→ Several BSM theories include an extended Higgs sector with at least one pair of charged Higgs bosons.

\rightarrow In the 2HDM models:

- ◆A total of 5 scalar bosons are predicted: h, H, A, H⁺, H⁻
- The H[±] decay mainly depends on:

•H[±] mass

•tanβ: vacuum expectation values ratio of the two Higgs doublets.

- • α : mixing angle of the CP-even Higgs bosons.
- ♦ In the Type-II 2HDM, the $H^+ \rightarrow tb$ decay dominates for:

•H⁺ mass > 200 GeV

• $\cos(\beta - \alpha) \sim 0$ limit (the light neutral scalar is SM-like)

Analysis overview

 \rightarrow Use LHC Run-2 139 fb⁻¹ pp collisions recorded with the ATLAS detector.

◆<u>10.1007/JHEP06(2021)145</u>

◆ Previous publication based on 2015+2016 (36 fb⁻¹). <u>10.1007/JHEP11(2018)085</u>

 \rightarrow Search in the 200 - 2000 GeV H⁺ mass range.

→Focused on the single lepton channel since it provides the best significance.

Analysis strategy

- →Select events with:
 - Exactly one lepton: e^{\pm} or μ^{\pm} .
 - ♦ \geq 5 jets, \geq 2 b-tagged at 70% efficiency.

- →Classify events according to jet and b-jet multiplicities.
 - ◆ Four signal regions: 5j3b, 5j≥4b, ≥6j3b, ≥6j≥4b.
 - tt+jets is the main background.
 - Especially tt+≥1b in the most signal-sensitive regions.
 - Modelling improved by applying Data/MC-based corrections.

tt+jets MC correction

→ Mitigate differences observed in data/MC distributions due to tt+jets mismodelling.

Data

Tt + light

______tt̄ + ≥1c

∎tī + X

🗌 non-tt

İtī+ ≥1b

Uncertainty

Corrected

l+jets, ≥6j ≥4b

Pre-fit

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

 $\chi^2 \text{ prob} = 0.89$

300

400

16.6 / 25

200

້ອັ2500⊢ **ATLAS**

2000

1500

1000

Data

🗍 tī + light

______tī + ≥1c

ltī + ≥1b

∎tī + X

non-tt

Uncertainty

0 500 600 Leading jet p_ [GeV]

→Data/MC-based factors extracted from 2b control regions:

อี 2500 – **ATLAS**

2000

1500

1000

• Dependent on jet multiplicity and $\sum p_{T}^{jet} + p_{T}^{lep}$ distributions.

Uncorrected

√s = 13 TeV, 139 fb⁻¹

Pre-fit, unweighted

I+jets, ≥6j ≥4b

→Corrections applied appropriately to the SRs improve pre-fit agreement:

Parameterised Neural Network

→Use of multivariate techniques to separate signal and background in the signal regions.

→Description:

- A single training performed for each signal region.
- Based on high-level kinematic variables:
 - $\sum p_T^{jet}$, leading jet p_T , kinematic discriminant...
- Input parameter: H⁺ mass hypothesis
- All H⁺ mass samples included in a single training.
 - Simplifies training, benefits from continuity, effectively more signal statistics and allows interpolation.

→Better signal and background separation at higher masses.

Fit results

- → Simultaneous binned profile likelihood fit to mass-parameterised NN output in the four signal regions.
 - One fit for each H⁺ mass hypothesis.
 - Normalisation of $tt+\geq 1b$ and $tt+\geq 1c$ backgrounds allowed to vary freely.
 - Systematic uncertainties included as nuisance parameters.

 \rightarrow Produced model-independent $\sigma \times BR$ limits.

→Improved exclusion limits at 95% CL with respect to the 36 fb⁻¹ publication, especially at high H⁺ masses.

→Limited by systematics, especially tt+≥1b modelling.

Exclusion limits

→Results interpreted in context of different benchmark models
 ◆hMSSM, M_h¹²⁵
 ◆M_h¹²⁵ (χ), M_h¹²⁵ (τ), M_h¹²⁵(align), M_h¹²⁵(CPV)

anβ

Exclusion limits on hMSSM improved especially at high H⁺ masses with respect to the previous publication.

→tanβ exclusion summary from direct and indirect ATLAS searches.

2HDM+a interpretation

Institut de Física d'Altes Energies

 \rightarrow The 2HDM+a is the simplest extension of the simplified pseudoscalar model.

• 2HDM scalars (*h*, *H*, *A*, H^{\pm}), pseudoscalar *a* and DM Dirac fermion χ .

 \bullet Extra parameter: mixing angle θ between pseudoscalars.

→Interpreted the H[±]→tb results in the context of the 2HDM+a model.

• Exclusion limits set on m_a , $m\chi$, tanβ, sinθ

ATLAS-CONF-2021-036

A. Salvador | Higgs Hunting 2021 | 21 September

 \rightarrow Performed a H⁺ \rightarrow tb search using the full Run-2 dataset in the single lepton channel.

- Implemented a PNN to separate signal and background.
- No significant excess above the expected SM background found.
- Improved 95% CL_s limits on σ x BR obtained with respect to previous analysis.
- Obtained $\tan\beta$ exclusion limits for various benchmark scenarios.

→Interpreted results in the 2HDM+a dark matter model.

Good complementarity with other dark matter searches.

Thank you for you attention!

Backup

A. Salvador | Higgs Hunting 2021 | 21 September

Signal sample details

→Four flavor scheme (4FS):

No b quarks in the initial state.

◆LO: Direct production $gg \rightarrow tbH^+$ and $qq \rightarrow tbH^+$ + NLO corrections.

→ Five flavor scheme (5FS):

◆Introducing b quark parton density functions.
◆LO: gb→tH⁺ + NLO corrections.

→4FS and 5FS yield differences at finite order.

→ Strategy used:

Signal sample simulated using 4FS.

◆4FS and 5FS NLO cross-sections combined with Santander matching:

$$\sigma = \frac{\sigma^{4\text{FS}} + w\sigma^{5\text{FS}}}{1+w} \quad w = \log \frac{M_{H^+}}{m_b} - 2$$

Background composition and yields

JHEP06(2021)145

m_{H^+} = 200 GeV hypothesis					
	5j, 3b	5j, ≥ 4b	≥ 6j, 3b	$\geq 6j, \geq 4b$	
$t\bar{t} + \text{light}$	45000 ± 4000	310 ± 110	32000 ± 4000	340 ± 140	
$t\bar{t} + \ge 1b$	29600 ± 2900	2940 ± 220	40200 ± 3300	8000 ± 500	
$t\bar{t} + \ge 1c$	14000 ± 4000	440 ± 140	19000 ± 6000	1010 ± 290	
$t\bar{t} + W$	110 ± 15	3.2 ± 0.6	236 ± 35	16.2 ± 2.7	
$t\bar{t} + Z$	300 ± 40	51 ± 6	670 ± 90	174 ± 23	
Single-top Wt-channel	2300 ± 600	80 ± 50	1900 ± 800	150 ± 90	
Single-top t-channel	740 ± 300	51 ± 20	500 ± 400	60 ± 50	
Other top-quark sources	128 ± 16	17.5 ± 3.2	180 ± 70	58 ± 24	
VV & V + jets	1600 ± 600	65 ± 23	1600 ± 600	120 ± 40	
tĪH	530 ± 60	127 ± 19	1140 ± 120	430 ± 60	
H^+	600 ± 900	70 ± 90	700 ± 1000	160 ± 230	
Total	95700 ± 2900	4150 ± 140	98400 ± 2900	10500 ± 400	
Data	95852	4109	98929	10552	

m_{H^+} = 800 GeV hypothesis						
	5j, 3b	5j, ≥ 4b	≥ 6j, 3b	$\geq 6j, \geq 4b$		
$t\bar{t}$ + light	46000 ± 4000	330 ± 120	33000 ± 4000	500 ± 200		
$t\bar{t} + \ge 1b$	29600 ± 3100	2920 ± 210	41000 ± 4000	8100 ± 400		
$t\bar{t} + \geq 1c$	14000 ± 6000	440 ± 190	17000 ± 7000	870 ± 330		
$t\bar{t} + W$	108 ± 15	3.3 ± 0.6	233 ± 35	16.0 ± 2.7		
$t\bar{t} + Z$	300 ± 40	50 ± 7	660 ± 90	171 ± 23		
Single-top Wt-channel	2000 ± 500	56 ± 33	1400 ± 500	100 ± 60		
Single-top t-channel	740 ± 300	53 ± 21	600 ± 500	70 ± 50		
Other top-quark sources	130 ± 16	17.7 ± 3.2	190 ± 70	61 ± 24		
VV & V + jets	1900 ± 700	73 ± 25	1700 ± 600	130 ± 50		
tīH	520 ± 60	125 ± 19	1130 ± 120	420 ± 60		
H^+	30 ± 80	4 ± 10	70 ± 180	20 ± 50		
Total	94700 ± 2800	4070 ± 140	97800 ± 2800	10400 ± 400		
Data	95852	4109	98929	10552		

Kinematic discriminant description

 \rightarrow Variable reflecting the probability of an event being compatible with the H⁺ \rightarrow tb and the tt hypotheses:

$$D = \frac{P_{H^+}(\mathbf{x})}{P_{H^+}(\mathbf{x}) + P_{t\bar{t}}(\mathbf{x})}$$

 \rightarrow $P_{H^+}(\mathbf{x})$ defined as the product of a pdf for each of the reconstructed invariant masses in the event:

Mass of the semileptonically decaying top quark.

Mass of the hadronically decaying W boson.

Mass of the hadronically top quark minus the mass of its W.

•Mass of the H⁺ minus the mass of the top quark of the H⁺ \rightarrow tb decay.

♦ For events with \geq 6 jets, mass of the H⁺ recoil system minus the corresponding top quark.

 $\rightarrow P_{t\bar{t}}(\mathbf{x})$ defined similarly:

◆For events with 5 jets, same invariant masses described before.

♦ For events with ≥6 jets, mass of the two highest p_{T} jets not used in the rest of the reconstructed objects.

Systematic uncertainties

 \rightarrow Systematic uncertainties impact on H⁺ σ x BR: ◆Largest contribution from tt+≥1b modelling systematics.

 \rightarrow tt+jets modelling uncertainties summary:

JHEP06(2021)145	d'Altes Energies	
Uncertainty source	$\Delta \mu(H_{200}^{+})$ [pb]	$\Delta \mu (H_{800}^{+})$ [pb]
$t\bar{t} + \ge 1b$ modelling	1.01	0.025
Jet energy scale and resolution	0.35	0.009
$t\bar{t} + \ge 1c$ modelling	0.32	0.006
Jet flavour tagging	0.20	0.025
Reweighting	0.22	0.007
$t\bar{t}$ + light modelling	0.33	0.009
Other background modelling	0.19	0.011
MC statistics	0.11	0.008
JVT, pile-up modelling	< 0.01	0.001
Luminosity	< 0.01	0.002
Lepton ID, isolation, trigger, E_{T}^{miss}	< 0.01	< 0.001
H^+ modelling	0.05	0.002
Total systematic uncertainty	1.35	0.049

0.23

0.045

0.43

1.42

 $t\bar{t} + \geq 1b$ normalisation

 $t\bar{t} + \geq 1c$ normalisation

Total uncertainty

Total statistical uncertainty

Uncertainty source	Description		Components
$t\bar{t}$ cross-section	Up or down by 6%	$t\bar{t} + light$	
tt reweighting	Statistical uncertainties of fitted funct	All $t\bar{t}$ and Wt	
$t\bar{t} + \geq 1b$ modelling	4FS vs 5FS	$t\bar{t} + \ge 1b$	
$t\bar{t} + \geq 1b$ normalisation	Free-floating	$t\bar{t} + \ge 1b$	
$t\bar{t} + \geq 1c$ normalisation	Free-floating		$t\bar{t} + \ge 1c$
NLO matching	MadGraph5_aMC@NLO+Pythia	VS POWHEGBOX+PYTHIA	All tī
PS & hadronisation	PowhegBox+Herwig	VS POWHEGBOX+PYTHIA	All $t\bar{t}$
ISR	Varying $\alpha_{\rm S}^{\rm ISR}$	in PowhegBox+Pythia	All $t\bar{t}$
$\mu_{ m f}$	Scaling by 0.5 (2.0)	in PowhegBox+Pythia	All $t\bar{t}$
$\mu_{ m r}$	Scaling by 0.5 (2.0)	in PowhegBox+Pythia	All $t\bar{t}$
FSR	Varying $\alpha_{\rm S}^{\rm FSR}$	in PowhegBox+Pythia	All $t\bar{t}$

0.007

0.015

0.025

0.055

Exclusion limits

→tanβ vs m(H⁺) exclusion limits:

• M_h^{125} ($\tilde{\chi}$), M_h^{125} ($\tilde{\tau}$), M_h^{125} (alignment), M_h^{125} (CPV)

2HDM+a limits

→Interpreted the H[±]→tb results in the context of the 2HDM+a model:

• Exclusion limits set on m_a , $m\chi$, tanβ, sinθ

