Additional scalar bosons Higgs Hunting 2021, 20–22 September 2021

Alexandros Attikis¹ on behalf of the CMS Collaboration

¹University of Cyprus (UCY)

Tuesday 21st September, 2021

Introduction

Introduction Beyond the SM Higgs Sector

In most extensions of the SM, the Higgs sector must also be extended

- Minimal extensions known as two-Higgs-doublet models (2HDMs) predict:
 - CP-even h^0 and H^0 , CP-odd A^0
 - ▶ Singly-charged H^+ and H^-

Observation of a charged Higgs boson an unequivocal proof of BSM physics

Four ways to couple SM fermions to two Higgs doublets (no FCNCs):

type I All quarks & leptons couple to Φ_2

type II All u-type to Φ_2 and all d-type & ℓ to Φ_1

type X Both u & d types couple to Φ_2 , all ℓ to Φ_1

type Y Roles of two doublets reversed wrt type II

Higgs triplet models (HTMs) extend the sector by addition of scalar triplet(s):

- Georgi-Machacek (GM) model adds one real & one complex SU(2) triplet
- ▶ Appearance of the $H^{\pm} W^{\pm} Z^{0}$ coupling at tree-level
- Presence of doubly-charged Higgs bosons H^{++} and H^{--}
- Extensions with a scalar singlet 2HDM+S lead to 2 additional Higgs bosons
 - ▶ h^0 , H^0 , A^0 , H^{\pm} , h_s^0 , $A^{0'}$ < NMSSM

Production & decay modes greatly depend on the particles masses

Introduction Overview of Run II searches

In recent years CMS has increased efforts to cover more phase space & models:

- Resolved & boosted topologies to increase sensitivity at high mass & high p_T
- ► Machine learning techniques for event & object classification (BDTs, DNNs)

Introduction Overview of Run II searches

In recent years CMS has increased efforts to cover more phase space & models:

- \blacktriangleright Resolved & boosted topologies to increase sensitivity at high mass & high $p_{\rm T}$
- Machine learning techniques for event & object classification (BDTs, DNNs)

Introduction Overview of Run II searches

In recent years CMS has increased efforts to cover more phase space & models:

- \blacktriangleright Resolved & boosted topologies to increase sensitivity at high mass & high $p_{\rm T}$
- ► Machine learning techniques for event & object classification (BDTs, DNNs)

2HDM

2HDM $H^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$ leptonic+hadronic arXiv:1903.04560

In type II 2HDMs a light $m_{\rm H\pm}$ decays ~exclusively to $\tau \nu$, is sizeable at heavy $m_{\rm H\pm}$:

- ▶ Three final states; $\tau_{\rm h}$ +jets, ℓ + $\tau_{\rm h}$, ℓ +no $\tau_{\rm h}$
- Major bkg for $\tau_{\rm h}$ +jets is jet $\rightarrow \tau_{\rm h}$ (data-driven)
- Bkg for $\ell + \tau_h$ and $\ell + no\tau_h$ is $t\bar{t}$ (simulation)
- Simultaneous binned ML fit to $m_{\rm T}(\tau_{\rm h}/\ell, p_{\rm T}^{\rm miss})$

postfit $m_{\rm T}$ distribution for $\ell + \tau_{\rm h}$

CMS 35.9 fb⁻¹ (13 TeV) Events / bin Dibosor Post-fit unc 10 Data/Bkg. 100 300 400 600 m_T (GeV)

postfit $m_{\rm T}$ distribution for $\tau_{\rm h}$ +jets

2HDM $H^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$ leptonic+hadronic arXiv:1903.04560

In type II 2HDMs a light $m_{\rm H^{\pm}}$ decays ~exclusively to $\tau \nu$, is sizeable at heavy $m_{\rm H^{\pm}}$:

- ▶ Three final states; τ_h +jets, ℓ + τ_h , ℓ +no τ_h
- Major bkg for τ_h +jets is jet $\rightarrow \tau_h$ (data-driven)
- Bkg for $\ell + \tau_h$ and $\ell + no\tau_h$ is $t\bar{t}$ (simulation)
- Simultaneous binned ML fit to $m_{\rm T}(\tau_{\rm h}/\ell,p_{\rm T}^{\rm miss})$

2HDM $H^{\pm} \rightarrow tb$ hadronic arXiv:2001.07763

For the heavy $m_{\mathrm{H}^{\pm}}$, the decay into top and bottom quarks is dominant:

- Fully hadronic $\mathcal{B}(\mathsf{FH}) \simeq 45\% \Rightarrow$ full $m_{\mathrm{H}^{\pm}}$ reco
- Resolved t and boosted W^{\pm}/t topologies
- Major bkg are misid. b-jets & QCD multijet
- Fit discriminants are m_{tb} and H_T spectrums

postfit H_{T} distribution for boosted W^{\pm}/t

2HDM $H^{\pm} \rightarrow tb$ hadronic arXiv:2001.07763

For the heavy $m_{\mathrm{H}^{\pm}}$, the decay into top and bottom quarks is dominant:

- Fully hadronic $\mathcal{B}(FH) \simeq 45\% \Rightarrow$ full $m_{H^{\pm}}$ recorresolved t boosted W
- Resolved t and boosted W^{\pm}/t topologies
- Major bkg are misid. b-jets & QCD multijet
- ▶ Fit discriminants are *m*_{tb} and H_T spectrums

interpretation in hMSSM scenario

boosted t

6/43

HTM ${\rm H}^\pm \to {\rm W}^\pm {\rm Z}^0$ and ${\rm H}^{\pm\pm} \to {\rm W}^\pm {\rm W}^\pm$ leptonic arXiv:2104.04762

In GM model ${\rm H}_5$ produced via VBF. Simultaneous study of WW and WZ channels:

▶ 2
$$\ell^{\sf SS}$$
, $p_{
m T}^{\sf miss}$, ≥ 2 jets (large $|\Delta\eta_{jj}|$ & ${
m m}_{jj}$)

Background consists of 3 major types:

- **()** Nonprompt from data CR (invert ℓ ID)
- WW & WZ from simulation (CR-validated)
- Prompt irreducible from MC (tZq & ZZ CRs)

HTM ${\rm H}^\pm \to {\rm W}^\pm {\rm Z}^0$ and ${\rm H}^{\pm\pm} \to {\rm W}^\pm {\rm W}^\pm$ leptonic arXiv:2104.04762

In GM model ${\rm H}_5$ produced via VBF. Simultaneous study of WW and WZ channels:

▶
$$3\ell$$
 ($|Q| = 1$), $p_{ ext{T}}^{\mathsf{miss}}$, ≥ 2 jets (large $|\Delta \eta_{jj}|$ & m_{jj})

- Background consists of 3 major types:
 - **(1)** Nonprompt from data CR (invert ℓ ID)
 - WW & WZ from simulation (CR-validated)
 - Prompt irreducible from MC (tZq & ZZ CRs)

9/43

$\label{eq:HTM} \text{H}^\pm \to \mathrm{W}^\pm \mathrm{Z}^0 \text{ and } \mathrm{H}^{\pm\pm} \to \mathrm{W}^\pm \mathrm{W}^\pm \text{ leptonic arXiv:} \textbf{2104.04762} \qquad \text{ 10/43}$

 $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$

Binned ML fit using m_{jj} and m_T^{VV} in 2SRs and 3CRs:

- ▶ Ignore H^{++} in $\sigma^{\mathrm{H}^{+}}_{\mathsf{VBF}} \cdot \mathcal{B}\left(\mathrm{H}^{\pm} \to \mathrm{W}^{\pm}\mathrm{Z}^{0}\right)$
- ▶ Ignore H^+ in $\sigma_{\mathsf{VBF}}^{\mathrm{H}^{++}} \cdot \mathcal{B}\left(\mathrm{H}^{\pm\pm} \to \mathrm{W}^{\pm}\mathrm{W}^{\pm}\right)$
- Exclude $s_{H} > 0.20-0.35$ for $m_{{
 m H}_5} = 0.2-1.5$ TeV
- Improved limits wrt previous CMS results
- Frequencies Theoretically inaccessible ($\Gamma_{\rm H_5} > 0.1 m_{\rm H_5}$)

 $\overset{\mathrm{off}}{\overset{\mathrm{off}}}{\overset{\mathrm{off}}{\overset{\mathrm{off}}{\overset{\mathrm{off}}{\overset{\mathrm{off}}}{\overset{\mathrm{off}}{\overset{\mathrm{off}}}{\overset{\mathrm{off}}{\overset{\mathrm{off}}}}{\overset{\mathrm{off}}}{\overset{{}}{\overset{\mathrm{off}}}{\overset{\mathrm{off}}}{\overset{\mathrm{off}}}{\overset{\mathrm{off}}}{\overset{{}}{\overset{\mathrm{o$

CMS

1000

2HDM+S

2HDM+S $\mathrm{H}^{0} \rightarrow \mathrm{h}^{0}_{125}\mathrm{h}^{0}_{s} \rightarrow \tau\tau\mathrm{bb}$ arXiv:2005.08900

Search for heavy H^0 decaying into observed h^0 and another Higgs boson h_s^0 :

• Categorisation based on $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$

postfit NN in $e\tau_h$ SR

- Require $1\ell 1\tau_h$ $(2\tau_h)$, ≥ 2 jets, ≥ 1 b jets
- Three different background estimation methods:
 - Genuine tau pairs (au au) with au-embedding

- 2 Misidentified τ_h (jet $\rightarrow \tau_h$) with misidentification rates
- Events with $Z/t\bar{t}/Diboson$ decaying into prompt $\ell = e, \mu$ from simulation
- Up to 94% of background events estimated from data
- ▶ NN multiclassification with s+4b categories; Returns p-like score/category

postfit NN in $\mu \tau_h$ SR

12/43

postfit NN in $\tau_{\rm h}\tau_{\rm h}$ SR

137 fb⁻¹ (13 TeV)

Signal

Z/tť/diboson (1

TT (17)

□ Jet→τ.

500)→h(125)h_(110) (50 fb)

Bkg.unc

2HDM+S $\mathrm{H}^{0} \rightarrow \mathrm{h}_{125}^{0} \mathrm{h}_{c}^{0} \rightarrow \tau \tau \mathrm{bb}$ arXiv:2005.08900

60

100

200

1000 2000

m_h (GeV

0.001

2000 3000

m_u (GeV)

1000

300 400

Due to 2 unknown signal masses, limits are derived as a function of $m_{\rm H^0}$ and $m_{\rm h_{-}}$: For each set of mass points, fit discriminant is NN score < 68 trainings</p> All upper limits shown in a single figure by scaling values by orders of 10 Upper limits of 125–2.7 fb for $m_{\rm H^0} = 240-1000$ GeV ($m_{\rm h_c} = 85-250$ GeV) NMSSM costrained for 400 $\leq m_{
m H^0} \lesssim$ 600 GeV and 60 $\leq m_{
m h_s} \lesssim$ 200 GeVupper limits of 125-2.7 fb summary of observed limits 137 fb⁻¹ (13 TeV) +μτ_+τ_τ CMS 137 fb⁻¹ (13 TeV) 95% CL limit on σ B(H→h(ττ) h_{s} (bb)) (pb) 10²³ () 2000 (Gev Observed CMS i5% CL limit on $\sigma B(H→h(ττ) h_c(bb))$ (pb) 10^{2} - - - Expected 68% expected 10¹ 95% expected ຮັ 1000 10¹⁵ 10¹³ 600 10¹¹ 500 0.0 400 10 300 10 600 GeV (. 107) 1800 GeV (200 n. = 2000 GeV (- 10 10 = 2500 GeV (· 10 100 10-60

2HDM+S $\mathrm{H}^{0} \rightarrow$ aa $\rightarrow \mu\mu\tau\tau$ boosted arXiv:2005.08694

Search for light pseudoscalar a in VBF and ggF production of H^0 :

2HDM+S $H^0 \rightarrow aa \rightarrow \mu\mu\tau\tau$ boosted arXiv:2005.08694

The 2D fit of $m_{\mu\mu}$ vs. $m_{\mu\mu\tau_h\tau_\mu}$ is performed in 3 ranges of the $m_{\mu\mu}$ spectrum:

- ► Signal modeled as Voigtian×split normal distribution $(m_{\mu\mu} \times m_{\mu\mu\tau_h\tau_\mu})$
- ▶ Bkg model accounts for exp. continuum & SM $\mu\mu$ resonances < J/ ψ , ψ' , Υ
- ▶ Model-independent limits on $\sigma_{\rm H} B \left({
 m H}^0 o aa o \mu \mu au au
 ight)$ for two values of $\overline{m_{
 m H^0}}$
- ▶ Model-specific limits on $\mathcal{B}\left(\mathrm{H}^{0}
 ightarrow aa
 ight)$ also set types I–IV

2HDM+S $X \rightarrow aa \rightarrow bbbb$ **boosted CMS-PAS-B2G-20-003**

 D_{i1}^{bb}

2HDM+S $X \rightarrow aa \rightarrow bbbb$ **boosted CMS-PAS-B2G-20-003**

A 2D mass spectrum of $m_{\bar{m}} = \frac{m_{i_1} + m_{i_2}}{2}$ and m_{h,h_2} is examined for localised excesses: ▶ Model-specific limits on $\sigma(\text{pp} \to X) \propto \frac{m_X N}{\epsilon}$ < 2HDM, NMSSM, Higgs Doublet Assuming $\mathcal{B}(X \to aa) = \mathcal{B}(a \to b\overline{b}) = 100\%$ Upper limits of 1–30 fb for $m_a = 25-100$ GeV and $m_X = 1-3$ TeV \checkmark first limits CMS Preliminary 138 fb⁻¹ (13 TeV) a mass = 25 GeV 10 -----(df) [(dd)(dd) ← mass = 50 GeV 95% CL limits: observed expected expected $\pm 1\sigma$ aa expected $\pm 2\sigma$ 70 Ge m_N/f = 1 ----- m_N/f = 2 $m_N/f = 4$ ----- m_xN/f = 8 đ a mass = 100 Ge 10 1000 1500 2000 X mass (GeV)

17/43

Summary

4

Summary & Outlook

Presented latest searches for additional scalar bosons with CMS:

- New techniques complement ×4 data
 - Improved ML methods
 - More categorisation
- No evidence for BSM physics observed
- Large part of parameter space excluded
- New results soon with full Run II data:
 - Direct searches above & below 125 GeV
 - Study of SM coupling modifications
 - Even more exotic searches ...?
- Stay tuned . . .

thank you.

21/43

This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation under the projects **POST-DOC/0718/0169** and **EXCELLENCE/1918/0379**

Ευρωπαϊκή Ένωση Ευρωπαϊκά Διαρθρωτικά και Επενδυτικά Ταμεία

Additional Material Navigation

- MSSM benchmark scenarios on page 23
- Particle flow algorithm on page 24
- Embedding technique for $\tau\tau$ backgrounds on page 25
- Single-charged Higgs boson *on page 27*
- Doubly-charged Higgs boson on page 30
- ▶ CMS $H^{\pm} \rightarrow cs$ semileptonic arXiv:2005.08900 on page 39
- \blacktriangleright CMS ${\rm H}^{\pm} \rightarrow {\rm W}^{\pm} {\rm A}^0$ leptonic <code>arXiv:1905.07453</code> on page 40
- ▶ CMS $H^{\pm} \rightarrow tb$ leptonic arXiv:1908.09206 on page 31
- ▶ CMS $H^{\pm} \rightarrow W^{\pm}Z^{0}$ semileptonic arXiv:1905.07445 on page 42
- ▶ CMS $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ semileptonic arXiv:1905.07445 on page 42
- ▶ CMS $H^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$ hadronic arXiv:1903.04560 on page 32
- \blacktriangleright CMS ${\rm H}^{\pm} \rightarrow {\rm tb}$ hadronic <code>arXiv:2001.07763</code> on page 36

Additional Material MSSM benchmark scenarios

Scenario	$M_{ m SUSY}$	μ	M ₂	X_t^{os}	$X_t^{\overline{\text{MS}}}$	$M_{\tilde{l}_3}$
	(GeV)	(GeV)	(GeV)	(GeV)	(GeV)	(GeV)
$m_{ m h}^{ m max}$	1000	200	200	$2M_{\rm SUSY}$	$\sqrt{6}M_{ m SUSY}$	1000
$m_{ m h}^{ m mod+}$	1000	200	200	$1.5M_{ m SUSY}$	$1.6M_{\rm SUSY}$	1000
$m_{ m h}^{ m mod-}$	1000	200	200	$-1.9M_{ m SUSY}$	$-2.2M_{\rm SUSY}$	1000
Light stop	500	350	350	$2M_{\rm SUSY}$	$2.2M_{\rm SUSY}$	1000
Light stau	1000	500	200	$1.6M_{ m SUSY}$	$1.7 M_{\rm SUSY}$	245
Light stau (Δau corr.)	1000	450	400	$1.6M_{\rm SUSY}$	$1.7 M_{\rm SUSY}$	250
au-phobic Higgs	1500	2000	200	$2.45 M_{ m SUSY}$	$2.9M_{\rm SUSY}$	500
Low- <i>M</i> _h	1500	free	200	$2.45 M_{ m SUSY}$	$2.9 M_{ m SUSY}$	1000

Different benchmark scenarios correspond to different sets of MSSM parameters:

- ▶ hMSSM: $h^0 = H^0_{125}$, $M_{SUSY} \sim 1$ TeV, Higgs sector described by $\{\tan \beta, m_{A^0}\}$ and h^0 phenomenology by couplings to V, t, b
- ► M_h¹²⁵: Heavy superparticles⇒production & decay of MSSM Higgs bosons only slightly affected by them
- *m*_h^{max}: maximal stop mixing, gives maximal light *m*_h⁰ for fixed {tan β, *m*_A⁰}
 *m*_h^{mod}: modified *m*_h^{max}, *X*_t/*M*_{SUSY} reduced to give *m*_h⁰ = 125 GeV for larger parameter space. +/- according to sign of *X*_t/*M*_{SUSY} (*X*_t = *A*_t − μ cot β)

Additional Material Particle flow algorithm

The PF algorithm aims to reco & id each particle in an event:

- Optimised combination of all subdetectors information
- The γ energy is obtained from the ECAL
- ▶ The e energy is determined from Tracker + ECAL
- > The μ energy is obtained from its track curvature from Tracker + ECAL
- The π^{\pm} energy is determined from Tracker + ECAL + HCAL
- The π^0 energy is obtained from corrected ECAL + HCAL energy
- ▶ All higher-level objects (jets, *b*-jets, p_T^{miss}) are constructed from PF particles

Additional Material Embedding technique for $\tau \tau$ backgrounds

Create hybrid event comprised of info from both observed and simulated events:

- Select $Z \rightarrow \mu\mu$ events in observed data
- Remove all μ -related energy deposits
- Simulate $\tau\tau$ events with same kinematic properties
- ▶ Merged μ -cleaned $Z \rightarrow \mu\mu$ with simulated $Z \rightarrow \tau\tau$ to get hybdrid

Additional Material Charged Higgs boson Production

Three mass categories are commonly used in H^{\pm} searches:

• Light $m_{
m H^\pm} < m_{
m t} - m_{
m b}$, heavy $m_{
m H^\pm} > m_{
m t}$

double-resonant t single-resonant t \overline{t} \overline{b} \overline{b}

Additional Material Charged Higgs boson Production

Three mass categories are commonly used in H^{\pm} searches:

▶ Light $m_{
m H^\pm} < m_{
m t} - m_{
m b}$, heavy $m_{
m H^\pm} > m_{
m t}$, intermediate $m_{
m H^\pm} \sim m_{
m t}$

 $\rm H^{\pm}$ decay BRs model-dependent \Rightarrow different searches constrain different scenarios:

• Coupling to 3rd-gen fermions is strongest in type II \Rightarrow Sensitive to $\tau\nu$ and tb

• The *cs* channel dominates at low tan β and low masses

Additional Material Singly-charged Higgs boson

For intermediate H^+ a more involved computation is required due to:

- Finite top-width effects
- Interference between resonant and non-resonant diagrams

Recent predictions for the NLO cross section of $pp \rightarrow bW^-\overline{b}H^+$ at the LHC:

- Focus on Type II 2HDM
- Increase cross section by roughly 50% (wrt LO)
- Reduce uncertainties by more than factor of 2 (scale variations)

The H^{\pm} decay BRs in the hMSSM benchmark scenario are shown below:

Additional Material Singly-charged Higgs boson

The H[±] decay BRs in the M_h^{125} benchmark scenario are shown below:

Additional Material Doubly-charged Higgs boson

vector boson fusion (VBF)

pair production (PP)

associated production (AP)

 $H^{\pm\pm}$ decays have unique signatures which can be utilised in direct searches:

The doubly-charged Higgs boson can be produced via 3 main processes:

Additional Material CMS $\mathrm{H^{\pm}} \rightarrow \mathrm{tb}$ leptonic arXiv:1908.09206

For the heavy $m_{\mathrm{H}^{\pm}}$, the decay into top and bottom quarks is dominant:

- Single lepton (ℓ) & OS dilepton ($\ell^{\pm}\ell^{\mp}$)
- Categorisation with jet & b-jets multiplicity
- $\blacktriangleright\,$ Major bkg is leptonic decay of W^\pm in $t\bar{t}$
- MVA techniques to enhance $\frac{S}{B}$ (BDT & DNN)

Additional Material CMS $\mathrm{H}^{\pm} o au^{\pm} u_{ au}$ hadronic arXiv:1903.04560

- Signal trigger $(\tau_h + p_T^{\text{miss}})$
- At least 1 *τ*-jet (trigger-matched):
 - \blacktriangleright $p_{
 m T}^{ au_{
 m h}} > 50\,$ GeV, $|\eta|^{ au_{
 m h}} < 2.1\,$
 - $\blacktriangleright p_{\mathrm{T}}^{\mathrm{ldg,tk}} > 30 \ \mathrm{GeV}$
 - 1-prong decays
 - Discriminators against e/μ
- Isolated electron/muon veto:
 - \blacktriangleright $p_{
 m T}^{
 m e} > 15~$ GeV, $|\eta|^e < 2.5~$
 - \blacktriangleright $p_{
 m T}^{\mu}>10\,$ GeV, $|\eta|^{\mu}<2.5$
- At least 3 PF hadronic jets:
 - $p_{
 m T}^{
 m j} > 30\,\,\,\,{
 m GeV},\,\,|\eta|^j < 4.7\,\,\,$
 - Separated from τ_h with $\Delta R > 0.5$
- From selected jets, at least 1 b-jet:
 - $p_{
 m T}^{
 m b} > 30\,\,\,\,{
 m GeV},\,|\eta|^{b} < 2.5\,\,\,$
 - Tagged with CSV algorithm (medium)
- $p_T^{\text{miss}} > 90 \text{ GeV}$
- Angular selection $R_{\rm bb}^{\rm min} > 40^{\circ}$
- $\ \, {\pmb 0} \ \, {\it R}_{\tau} = {\it p}_{\rm T}^{\rm ldg,tk}/{\it p}_{\rm T}^{\tau_h} \ \, {\sf categories} \ \, (\leq 0.75, \, > 0.75)$

Additional Material CMS $\mathrm{H}^\pm o au^\pm u_ au$ hadronic arXiv:1903.04560

Backgrounds with genuine τ_h and $e/\mu \rightarrow \tau_h$ events estimated from simulations. Misidentified τ_h background is measured with fake rate method:

- Use samples enriched in misidentified taus by inverting τ_h isolation
- Calculate transfer factors (R) from IR to NR (jet $\rightarrow \tau_h$ enriched regions):

$$R_{\rm IR\to NR} = \frac{N_{\rm NR}}{N_{\rm IR}} \simeq R_{\rm AR\to SR} \tag{1}$$

33/43

• Apply $R_{IR o NR}$ to the AR to estimate jet $o au_h$ in the SR

Additional Material CMS $H^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$ hadronic arXiv:1903.04560

The transfer factors are calculated separately (different q/g content):

- ► For EWK (includes $t\bar{t}$) from simulation as $R_{IR \rightarrow NR}^{EWK} = \frac{M_{NR}^{EWK MC}}{M_{NR}^{EWK MC}}$
- ▶ For QCD from binned ML fit of p_T^{miss} templates to data as:

$$R_{\rm IR \rightarrow NR}^{\rm QCD} = \frac{f_{\rm QCD}^{\rm fit} \cdot N_{\rm NR}^{\rm Data \ Fit}}{N_{\rm IR}^{\rm QCD \ Fit}}$$

Ľ

▶ The fraction of QCD events, *f*^{fit}_{QCD}, is a fit parameter.

The combined transfer factor is defined as a weighted average:

► $R_{\text{IR} \to \text{NR}} = w_{AR}^{QCD} \cdot R_{\text{IR} \to \text{NR}}^{\text{QCD}} + (1 - w_{AR}^{QCD}) \cdot R_{\text{IR} \to \text{NR}}^{\text{EWK}}$ with w_{AR}^{QCD} being the QCD purity in AR.

Additional Material CMS $H^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$ hadronic arXiv:1903.04560

The measurement is performed in p_{T} and $|\eta|$ bins of the au_h to:

- Minimise correlations of the $p_{\mathrm{T}}^{\tau_h}$ $p_{\mathrm{T}}^{\mathsf{miss}}$ variables
- Mitimage geometrical differences in detector response

 \therefore The jet $\rightarrow \tau_{\rm h}$ background measurement in the SR is thus given by:

$$N_{\rm SR}^{\rm jet \to \tau_h} = \sum_{i}^{\tau_h \text{ bins}} (N_{\rm AR, i}^{\rm Data} - N_{\rm AR, i}^{\rm EWK \text{ genuine } \tau_h} - N_{\rm AR, i}^{\rm EWK \text{ e}/\mu \to \tau_h}) \times R_{\rm IR \to NR}$$
(2)

The systematics uncertainties accounted for include:

- ▶ The $R_{IR \rightarrow NR}$ stat. uncertainties (normalisation uncertainty)
- Difference in the $m_{\rm T}$ shape in SR and AR (shape uncertainty)
- All uncertainties related to the simulated samples

Additional Material CMS $\mathrm{H^{\pm}} \rightarrow \mathrm{tb}$ hadronic arXiv:2001.07763

36/43

Both analyses selected fully-hadronic final states by enforcing lepton vetoes:

Resolved t

- \geq 7 AK4 jets, \geq 3 *b*-tags
- ${\small 2} \hspace{0.1 cm} H_{\rm T} > 500 \hspace{0.1 cm} \text{GeV}$

Reconstruct m_{H±} using tetrajet from:

- leading in $p_{\rm T}$ resolved top
- leading in p_T free b jet

• Search for excess in the m_{tb} spectrum

Boosted W^{\pm}/t

- ${f 0}\ \geq 1$ AK8 jets, ≥ 1 *b*-jets
- 2 Jet substructure used for W^{\pm}/t tag

Boosted W^{\pm}

- ▶ τ^W₂₁ < 0.6</p>
- $\blacktriangleright \ \mathrm{m}_{\textit{SD}}^{\textit{W}} \in [65, 105]$
- 0 b-subjets

- Boosted t
- ▶ $au_{32}^{top} < 0.67$
- ▶ $m_{SD}^{top} \in [135, 220]$
- 0 or 1 b-subjets
- Reconstruct $m_{\mathrm{H}^{\pm}}$ from AK8+AK4
 - Boosted W^{\pm} Boosted t
- \blacktriangleright W+b+b \blacktriangleright t_{0b}+b
- \blacktriangleright W+b+j \blacktriangleright t_{1b}+b
- N_j , N_b , $\Delta m_{\mathrm{H}^{\pm}}$ categorisation
- **③** Search for excess in ${
 m H}_{
 m T}$ of $\Delta m_{
 m H^{\pm}}$

Resolved t

- Boosted W[±]/t $r_{12} \ge 0.67, r_{21} \ge 0.6$ $r_{12} < 0.67, r_{21} < 0.6$ below in above normalization CR: Single Leptonic
 - Dominant QCD multijet (~ 90%)
 - Shape from **CR**: Mirror (invert τ_{21}^{W} and τ_{32}^{top})
 - ▶ Norm from below/above $\Delta m_{\rm H^{\pm}}$ (sidebands)
 - $t\bar{t}$ with CR: Single Leptonic
 - ▶ 1ℓ with $10 < p_{\rm T} < 35$ GeV
 - The CRs and SRs are simultaneously fitted to:
 - determine normalisation
 - determine shape of the bkg distributions

- Minor Genuine-b estimated from simulation
- Main Fake-b measured from data by inverting top- & b-tagging selections

$$N_i^{\text{SR}} = \sum_i N_i^{\text{AR}} \cdot \left(\frac{N_i^{\text{CR1}}}{N_i^{\text{CR2}}}\right)$$

i runs over $\textit{p}_{\rm T}$ and η bins

Additional Material CMS $\mathrm{H^{\pm}} \rightarrow \mathrm{tb}$ hadronic arXiv:2001.07763

Combination of $H^{\pm} \rightarrow tb$ leptonic & $H^{\pm} \rightarrow tb$ hadronic final states:

- ▶ Single lepton dominates entire $m_{H^{\pm}}$ spectrum
- Dilepton sensitive at low $m_{
 m H^{\pm}}$ region (\sim 20% gain)
- ▶ Hadronic \sim comparable to dilepton at low $m_{\mathrm{H}^{\pm}}$
- Hadronic competes with Single lepton at 3 TeV (\sim 30% gain)

Combination ${\rm H}^\pm \to \tau^\pm \nu_\tau \,+\, {\rm H}^\pm \to {\rm tb}$ leptonic is also shown ,

Additional Material CMS $H^{\pm} \rightarrow cs$ arXiv:2005.08900

In type II 2HDMs a light $m_{\rm H^{\pm}}$ decays predominantly to *cs* for low tan β values:

- ▶ Require 1ℓ , ≥ 4 jets (≥ 2 *b*-tagged), p_{T}^{miss}
- Top kinematic fit (KF) with m_t constraints
- Categorisation based on c-tagging (L,M,T)
- Fit discriminant is m_{jj} of 2 non-b jets

Additional Material CMS $H^{\pm} \rightarrow W^{\pm}A^{0}$ arXiv:1905.07453

First LHC search for light $m_{\rm H^{\pm}}$ decaying to *WA* in any range of $m_{\rm H^{\pm}}$:

- ▶ Target $e\mu\mu$ or $\mu\mu\mu$ with $A^0 \to \mu^+\mu^-$
- $\mathcal{B}\left(A^{0} \to \mu^{+}\mu^{-}\right)$ small but high $\varepsilon_{\text{ID}}^{\mu}$ and $\frac{\sigma(\rho_{\text{T}}^{\mu})}{\rho_{\text{T}}^{\mu}}$
- Major bkg is $t\overline{t}$ with nonprompt leptons
- Excess search in mass windows w of $m_{\mu^+\mu^-}$

w optimised to maximise median significance

Additional Material CMS $H^{\pm} \rightarrow W^{\pm}A^{0}$ arXiv:1905.07453

Upper limits at 95% CL on $\mathcal{B}(t \to bH^+) \cdot \mathcal{B}(H^{\pm} \to W^{\pm}A^0) \cdot \mathcal{B}(A^0 \to \mu^+\mu^-)$:

▶ Based event yields in *w* from $e\mu\mu \& \mu\mu\mu$ ABBBB COM Upper limit between 0.63 – 2.9% Sensitivity dominated by stat. uncertainty Limit difference smaller than uncertainties $m_{\rm H^+} = m_{\Lambda 0} + 85 \,\,{\rm GeV}$ $m_{
m H^\pm} = 160 \; {
m GeV}$ CMS 35.9 fb⁻¹ (13 TeV) CMS 35.9 fb⁻¹ (13 TeV) 95% CL upper limit on $B({
m t}
ightarrow{
m bH^{+}})$ (%) 95% CL upper limit on $B({
m t}
ightarrow{
m bH^{+}})$ (%) 68% expected 68% expected 8 8Ē εμμ+μμμ εμμ+μμμ 95% expected 95% expected ledian expected Median expected m_{H⁺} = 160 GeV Observed Observed $m_{H^+} = m_A + 85 \, GeV$ $B(H^+ \rightarrow W^+A) = 1$ $B(H^+ \rightarrow W^+A) = 1$ $B(A \rightarrow \mu\mu) = 3 \times 10^{-4}$ $B(A \rightarrow \mu\mu) = 3 \times 10^{-4}$ 20 30 40 50 60 70 30 40 50 60 70 20 m₄ (GeV) m₄ (GeV)

Additional Material $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ arXiv:1905.07445

In the GM model ${\rm H}^{\pm}$ and ${\rm H}^{\pm\pm}$ are produced via VBF:

- Semileptonic WV (1 ℓ) and ZV (2 ℓ) decays
- Hadronic V reconstructed as AK8 ($\tau_{21}^V < 0.55$)
- Leptonic *W* reconstructed from solving the p_z^{ν}
- Major bkg is W+jets (WV) and Z+jets (ZV)

Signal extraction with fit to m_{ZV}

Additional Material $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ arXiv:1905.07445

🐪 WV channel

ZV channel

35.0 fb⁻¹ (13 Te\/)

Observed

68% expected

95% expected

m(H[±]) (GeV)

···· Expected

1500

CMS

. H[±]→W[±]Z→aā'll

1000

10

10

WW channel

