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▶ In most extensions of the SM, the Higgs sector must also be extended
▶ Minimal extensions known as two-Higgs-doublet models (2HDMs) predict:

▶ CP-even h0 and H0, CP-odd A0

▶ Singly-charged H+ and H−

▶ Observation of a charged Higgs boson an unequivocal proof of BSM physics
▶ Four ways to couple SM fermions to two Higgs doublets (no FCNCs):

type I All quarks & leptons couple to Φ2

type II All u-type to Φ2 and all d-type & ℓ to Φ1

type X Both u & d types couple to Φ2, all ℓ to Φ1

type Y Roles of two doublets reversed wrt type II

Type u d ℓ

I Φ2 Φ2 Φ2

II Φ2 Φ1 Φ1 MSSM

III (X) Φ2 Φ2 Φ1

IV (Y) Φ2 Φ1 Φ2

▶ Higgs triplet models (HTMs) extend the sector by addition of scalar triplet(s):
▶ Georgi-Machacek (GM) model adds one real & one complex SU(2) triplet
▶ Appearance of the H± W± Z0 coupling at tree-level
▶ Presence of doubly-charged Higgs bosons H++ and H−−

▶ Extensions with a scalar singlet 2HDM+S lead to 2 additional Higgs bosons
▶ h0, H0, A0, H±, h0

s , A0 ′ NMSSM

▶ Production & decay modes greatly depend on the particles masses
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In recent years CMS has increased efforts to cover more phase space & models:
▶ Resolved & boosted topologies to increase sensitivity at high mass & high pT
▶ Machine learning techniques for event & object classification (BDTs, DNNs)

Third Generation

A0/H0 → ttA0/H0 → ttA0/H0 → tt
arXiv:1704.07323

A0/H0 → bbA0/H0 → bbA0/H0 → bb
arXiv:1805.12191

H± → tbH± → tbH± → tb
arXiv:1908.09206
arXiv:2001.07763

A0/H0 → ττA0/H0 → ττA0/H0 → ττ
arXiv:1803.06553

H± → τ±ντH± → τ±ντH± → τ±ντ
arXiv:1903.04560

Other

A0/H0 → µµA0/H0 → µµA0/H0 → µµ
arXiv:1907.03152

H± → csH± → csH± → cs
arXiv:2005.08900

H0 → aa → µµττH0 → aa → µµττH0 → aa → µµττ
arXiv:2005.08694

H0 → h0125h
0
s → ττbbH0 → h0125h
0
s → ττbbH0 → h0125h
0
s → ττbb

PAS-HIG-20-014

DiHiggs

H0H0 → bbW±W∓H0H0 → bbW±W∓H0H0 → bbW±W∓

PAS-B2G-20-007
resonant

H0H0 → bbbbH0H0 → bbbbH0H0 → bbbb
PAS-B2G-20-004
boosted resonant

H0H0 → bbbbH0H0 → bbbbH0H0 → bbbb
PAS-B2G-21-001

boosted non-resonant

H0H0 → bbbbH0H0 → bbbbH0H0 → bbbb
PAS-HIG-20-005

resolved non-resonant

H0H0 → bbγγH0H0 → bbγγH0H0 → bbγγ
arXiv:2011.22373
non-resonant

H0H0 → bb4ℓH0H0 → bb4ℓH0H0 → bb4ℓ
PAS-HIG-20-004
non-resonant

DiBoson

A0 → Z0h0 → ℓℓ(νν)bbA0 → Z0h0 → ℓℓ(νν)bbA0 → Z0h0 → ℓℓ(νν)bb
arXiv:1903.00941

H0/A0 → Z0A0/H0 → ℓℓbbH0/A0 → Z0A0/H0 → ℓℓbbH0/A0 → Z0A0/H0 → ℓℓbb
arXiv:1911.03781

H0 → W±W∓H0 → W±W∓H0 → W±W∓

arXiv:1912.01594

H± → W±A0H± → W±A0H± → W±A0

arXiv:1905.07453

H±(±) → W±Z0(W±W±)H±(±) → W±Z0(W±W±)H±(±) → W±Z0(W±W±)
arXiv:2104.04762

this talk
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In recent years CMS has increased efforts to cover more phase space & models:
▶ Resolved & boosted topologies to increase sensitivity at high mass & high pT
▶ Machine learning techniques for event & object classification (BDTs, DNNs)

LightLightLight
mH± < mt −mb

H± → W±A0H± → W±A0H± → W±A0

leptonic
arXiv:1905.07453

H± → csH± → csH± → cs
semileptonic

arXiv:2005.08900

IntermediateIntermediateIntermediate
mH± ≃ mt

H± → τ±ντH± → τ±ντH± → τ±ντ
leptonic & hadronic
arXiv:1903.04560

HeavyHeavyHeavy
mH± > mt −mb

H± → tbH± → tbH± → tb
leptonic

arXiv:1908.09206

H± → W±Z0H± → W±Z0H± → W±Z0

semileptonic
arXiv:1905.07445

H± → tbH± → tbH± → tb
leptonic & hadronic
arXiv:2001.07763

H± → W±Z0H± → W±Z0H± → W±Z0

leptonic
arXiv:2104.04762

H±± → ℓ+ℓ−ℓ+ℓ−H±± → ℓ+ℓ−ℓ+ℓ−H±± → ℓ+ℓ−ℓ+ℓ−

leptonic
PAS-HIG-16-036

H±± → W±W±H±± → W±W±H±± → W±W±

semileptonic
arXiv:1905.07445

H±± → W±W±H±± → W±W±H±± → W±W±

leptonic
arXiv:1709.05822

H±± → W±W±H±± → W±W±H±± → W±W±

leptonic
arXiv:2104.04762

35.9 fb−135.9 fb−135.9 fb−1

137 fb−1137 fb−1137 fb−1

in backupin backupin backup

not coverednot coverednot covered

a

a

a

a
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2HDM H± → τ±ντ leptonic+hadronic arXiv:1903.04560 5/43

In type II 2HDMs a light mH± decays ∼exclusively to τν, is sizeable at heavy mH± :

▶ Three final states; τh+jets, ℓ+τh, ℓ+noτh

▶ Major bkg for τh+jets is jet → τh (data-driven)
▶ Bkg for ℓ+τh and ℓ+noτh is tt (simulation)
▶ Simultaneous binned ML fit to mT(τh/ℓ, pmiss

T )

g

g

g
t

H+

b

t

W−

b

τ+ → τ+h + ντ

ντ

q′

q

postfit mT distribution for ℓ+τh
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T
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Single t Diboson

* γZ/ Post-fit unc.

 (13 TeV)-135.9 fbCMS

postfit mT distribution for τh+jets
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Dr
aft

2HDM H± → τ±ντ leptonic+hadronic arXiv:1903.04560 5/43

In type II 2HDMs a light mH± decays ∼exclusively to τν, is sizeable at heavy mH± :

▶ Three final states; τh+jets, ℓ+τh, ℓ+noτh

▶ Major bkg for τh+jets is jet → τh (data-driven)
▶ Bkg for ℓ+τh and ℓ+noτh is tt (simulation)
▶ Simultaneous binned ML fit to mT(τh/ℓ, pmiss

T )

g

g

g
t

H+

b

t

W−

b

τ+ → τ+h + ντ

ντ

q′

q

upper limit of 6 pb – 5 fb

100 150

) 
(p

b)
τν± τ 

→ ±
(H

B ±
Hσ

3−10

2−10

1−10

1

10

CMS

95% CL upper limits
Observed
Median expected
68% expected
95% expected

ντ → ±H
All final states combined

 (GeV)±Hm
1000

 (13 TeV)-135.9 fb

180 3000

interpretation in mmod−
h scenario
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10

20

30

40

50

60β
ta

n 
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Excluded

Median expected
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ντ → ±H
mod-
hmMSSM 
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2HDM H± → tb hadronic arXiv:2001.07763 6/43

For the heavy mH± , the decay into top and bottom quarks is dominant:

▶ Fully hadronic B (FH) ≃ 45% ⇒ full mH± reco
▶ Resolved t and boosted W±/t topologies
▶ Major bkg are misid. b-jets & QCD multijet
▶ Fit discriminants are mtb and HT spectrums

g

g

t
b

W−
q

q′

t

b

H+ t

b

b

W+

q

q′

b

postfit mtb distribution for resolved t
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postfit HT distribution for boosted W±/t
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For the heavy mH± , the decay into top and bottom quarks is dominant:

▶ Fully hadronic B (FH) ≃ 45% ⇒ full mH± reco
▶ Resolved t and boosted W±/t topologies
▶ Major bkg are misid. b-jets & QCD multijet
▶ Fit discriminants are mtb and HT spectrums
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j
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HTM H± → W±Z0 and H±± → W±W± leptonic arXiv:2104.04762 8/43

In GM model H5 produced via VBF. Simultaneous study of WW and WZ channels:

▶ 2ℓSS, pmiss
T , ≥ 2 jets (large |∆ηjj | & mjj)

▶ Background consists of 3 major types:
1 Nonprompt from data CR (invert ℓ ID)
2 WW & WZ from simulation (CR-validated)
3 Prompt irreducible from MC (tZq & ZZ CRs)

q q′
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W±q q′

postfit mjj in WW SR (finer binning)
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HTM H± → W±Z0 and H±± → W±W± leptonic arXiv:2104.04762 9/43

In GM model H5 produced via VBF. Simultaneous study of WW and WZ channels:

▶ 3ℓ (|Q| = 1), pmiss
T , ≥ 2 jets (large |∆ηjj | & mjj)

▶ Background consists of 3 major types:
1 Nonprompt from data CR (invert ℓ ID)
2 WW & WZ from simulation (CR-validated)
3 Prompt irreducible from MC (tZq & ZZ CRs)
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Binned ML fit using mjj and mVV
T in 2SRs and 3CRs:

▶ Ignore H++ in σH+

VBF · B
(
H± → W±Z0)

▶ Ignore H+ in σH++

VBF · B (H±± → W±W±)
▶ Exclude sH > 0.20–0.35 for mH5 = 0.2–1.5 TeV
▶ Improved limits wrt previous CMS results
▶ Theoretically inaccessible (ΓH5 > 0.1mH5)
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H0 h0

h0s

τ−

τ+

b

b

2HDM+S H0 → h0
125h0

s → ττbb arXiv:2005.08900 12/43

Search for heavy H0 decaying into observed h0 and another Higgs boson h0
s :

▶ Categorisation based on eτh, µτh, τhτh
▶ Require 1ℓ1τh (2τh), ≥ 2 jets, ≥ 1 b jets
▶ Three different background estimation methods:

1 Genuine tau pairs (ττ) with τ -embedding
2 Misidentified τh (jet → τh) with misidentification rates
3 Events with Z/tt/Diboson decaying into prompt ℓ = e, µ from simulation

▶ Up to 94% of background events estimated from data
▶ NN multiclassification with s+4b categories; Returns p-like score/category
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2HDM+S H0 → h0
125h0

s → ττbb arXiv:2005.08900 13/43

Due to 2 unknown signal masses, limits are derived as a function of mH0 and mhs :
▶ For each set of mass points, fit discriminant is NN score 68 trainings

▶ All upper limits shown in a single figure by scaling values by orders of 10
▶ Upper limits of 125–2.7 fb for mH0 = 240–1000 GeV (mhs = 85–250 GeV)
▶ NMSSM costrained for 400 ≤ mH0 ≲ 600 GeV and 60 ≤ mhs ≲ 200 GeV
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2HDM+S H0 → aa → µµττ boosted arXiv:2005.08694 14/43

Search for light pseudoscalar a in VBF and ggF production of H0:

▶ Focus on ma ∈ [3.6, 21] GeV
▶ B (a → ττ) dominates ma < 2mb

▶ Target µµτhτµ & exploit Lorentz boost mH0 ≫ ma

▶ Require 2µ & boosted τ -lepton pair τhτµ

▶ Fit discriminants are mµµ and mµµτhτµ

▶ Simult. unbinned fit in SR, CR & Sideband constrain norm & shape
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2HDM+S H0 → aa → µµττ boosted arXiv:2005.08694 15/43

The 2D fit of mµµ vs. mµµτhτµ
is performed in 3 ranges of the mµµ spectrum:

▶ Signal modeled as Voigtian×split normal distribution (mµµ × mµµτhτµ
)

▶ Bkg model accounts for exp. continuum & SM µµ resonances J/ψ, ψ′,Υ

▶ Model-independent limits on σHB
(
H0 → aa → µµττ

)
for two values of mH0

▶ Model-specific limits on B
(
H0 → aa

)
also set types I–IV

upper limits for mH0 = 125 GeV
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masym ∆η Dbb
j1

tight search region < 0.1 < 1.5 > 0.8
loose search region ∈ [0.1, 0.25] < 1.5 > 0.8

tight ∆η sideband < 0.1 > 1.5 > 0.8
loose ∆η sideband ∈ [0.1, 0.25] > 1.5 > 0.8

tight double-b sideband < 0.1 < 1.5 [−0.8, 0.3]
loose double-b sideband ∈ [0.1, 0.25] < 1.5 [−0.8, 0.3]

2HDM+S X → aa → bbbb boosted CMS-PAS-B2G-20-003 16/43

Search for massive resonance X decaying to two light scalars a in ggF production:

▶ Focus on ma ∈ [25, 100] GeV ; mX ∈ [1, 3] TeV
▶ B

(
a → bb

)
dominates ma > 2mb

▶ Target boosted topologies with overlapping b’s mX ≫ ma

▶ Large HT, 2 AK8 jets with double-b tagger
▶ Define SRs and CRs with 3 quantities:

▶ Mass asymmetry masym = (mj1 −mj2 )
(mj1 +mj2 )

▶ Double-b tagging score of leading jet Dbb
j1

▶ ∆η between the two AK8 jets

X
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X mass (GeV)

 σ
 [p

p 
→

 X
 →

 a
a 

→
 (b

b)
(b

b)
] (

fb
) 

138 fb-1 (13 TeV)CMS Preliminary

2HDM+S X → aa → bbbb boosted CMS-PAS-B2G-20-003 17/43

A 2D mass spectrum of mm̄ = mj1 +mj2
2 and mj1j2 is examined for localised excesses:

▶ Model-specific limits on σ(pp → X ) ∝ mX N
f 2HDM, NMSSM, Higgs Doublet

▶ Assuming B (X → aa) = B
(
a → bb

)
= 100%

▶ Upper limits of 1–30 fb for ma = 25–100 GeV and mX = 1–3 TeV first limits
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Summary
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Summary & Outlook 19/43

Presented latest searches for additional scalar bosons with CMS:

▶ New techniques complement ×4 data
▶ Improved ML methods
▶ More categorisation

▶ No evidence for BSM physics observed
▶ Large part of parameter space excluded
▶ New results soon with full Run II data:

▶ Direct searches above & below 125 GeV
▶ Study of SM coupling modifications
▶ Even more exotic searches . . . ?

▶ Stay tuned . . .
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thank you.
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Additional Material Navigation 22/43

▶ MSSM benchmark scenarios on page 23
▶ Particle flow algorithm on page 24
▶ Embedding technique for ττ backgrounds on page 25
▶ Single-charged Higgs boson on page 27
▶ Doubly-charged Higgs boson on page 30
▶ CMS H± → cs semileptonic arXiv:2005.08900 on page 39
▶ CMS H± → W±A0 leptonic arXiv:1905.07453 on page 40
▶ CMS H± → tb leptonic arXiv:1908.09206 on page 31
▶ CMS H± → W±Z0 semileptonic arXiv:1905.07445 on page 42
▶ CMS H±± → W±W± semileptonic arXiv:1905.07445 on page 42
▶ CMS H± → τ±ντ hadronic arXiv:1903.04560 on page 32
▶ CMS H± → tb hadronic arXiv:2001.07763 on page 36
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Additional Material MSSM benchmark scenarios 23/43

Different benchmark scenarios correspond to different sets of MSSM parameters:

Scenario
MSUSY µ M2 X os

t XMS
t Ml̃3

(GeV) (GeV) (GeV) (GeV) (GeV) (GeV)
mmax

h 1000 200 200 2MSUSY
√

6MSUSY 1000
mmod+

h 1000 200 200 1.5MSUSY 1.6MSUSY 1000
mmod−

h 1000 200 200 -1.9MSUSY -2.2MSUSY 1000
Light stop 500 350 350 2MSUSY 2.2MSUSY 1000
Light stau 1000 500 200 1.6MSUSY 1.7MSUSY 245
Light stau (∆τ corr.) 1000 450 400 1.6MSUSY 1.7MSUSY 250
τ -phobic Higgs 1500 2000 200 2.45MSUSY 2.9MSUSY 500
Low-Mh 1500 free 200 2.45MSUSY 2.9MSUSY 1000

▶ hMSSM: h0 = H0
125, MSUSY ∼ 1 TeV, Higgs sector described by {tanβ,mA0}

and h0 phenomenology by couplings to V, t, b
▶ M125

h : Heavy superparticles⇒production & decay of MSSM Higgs bosons only
slightly affected by them

▶ mmax
h : maximal stop mixing, gives maximal light mh0 for fixed {tanβ,mA0}

▶ mmod
h : modified mmax

h , Xt/MSUSY reduced to give mh0 = 125 GeV for larger
parameter space. +/- according to sign of Xt/MSUSY (Xt = At − µ cotβ)
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Additional Material Particle flow algorithm 24/43

The PF algorithm aims to reco & id each particle in an event: arXiv:1706.04965

▶ Optimised combination of all subdetectors information
▶ The γ energy is obtained from the ECAL
▶ The e energy is determined from Tracker + ECAL
▶ The µ energy is obtained from its track curvature from Tracker + ECAL
▶ The π± energy is determined from Tracker + ECAL + HCAL
▶ The π0 energy is obtained from corrected ECAL + HCAL energy
▶ All higher-level objects (jets, b-jets, pmiss

T ) are constructed from PF particles

ECAL

µ

tracks charged
hadrons

HCAL

µ

neutral
hadron

photon

Detector level Particle Flow

https://arxiv.org/abs/1706.04965
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Additional Material Embedding technique for ττ backgrounds 25/43

Create hybrid event comprised of info from both observed and simulated events:
▶ Select Z → µµ events in observed data
▶ Remove all µ-related energy deposits
▶ Simulate ττ events with same kinematic properties
▶ Merged µ-cleaned Z → µµ with simulated Z → ττ to get hybdrid
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Additional Material Charged Higgs boson Production 26/43

Three mass categories are commonly used in H± searches:
▶ Light mH± < mt − mb, heavy mH± > mt

double-resonant t

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.

(a) (b)

Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)

vahirsch@slac.stanford.edu (Valentin Hirschi), ubiali@hep.phy.cam.ac.uk (Maria Ubiali), mariusw@physik.uzh.ch
(Marius Wiesemann), zaro@lpthe.jussieu.fr (Marco Zaro)

1In the four-flavour scheme there is also an explicit bottom quark in the final state.
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single-resonant t

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.

(a) (b)

Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)

vahirsch@slac.stanford.edu (Valentin Hirschi), ubiali@hep.phy.cam.ac.uk (Maria Ubiali), mariusw@physik.uzh.ch
(Marius Wiesemann), zaro@lpthe.jussieu.fr (Marco Zaro)

1In the four-flavour scheme there is also an explicit bottom quark in the final state.
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Three mass categories are commonly used in H± searches:
▶ Light mH± < mt − mb, heavy mH± > mt, intermediate mH± ∼ mt

double-resonant t

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.

(a) (b)

Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)

vahirsch@slac.stanford.edu (Valentin Hirschi), ubiali@hep.phy.cam.ac.uk (Maria Ubiali), mariusw@physik.uzh.ch
(Marius Wiesemann), zaro@lpthe.jussieu.fr (Marco Zaro)

1In the four-flavour scheme there is also an explicit bottom quark in the final state.

2

single-resonant t

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.

(a) (b)

Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)

vahirsch@slac.stanford.edu (Valentin Hirschi), ubiali@hep.phy.cam.ac.uk (Maria Ubiali), mariusw@physik.uzh.ch
(Marius Wiesemann), zaro@lpthe.jussieu.fr (Marco Zaro)

1In the four-flavour scheme there is also an explicit bottom quark in the final state.

2

non-resonant t

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.

(a) (b)

Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)
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(Marius Wiesemann), zaro@lpthe.jussieu.fr (Marco Zaro)

1In the four-flavour scheme there is also an explicit bottom quark in the final state.

2

neutral scalars

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.

(a) (b)

Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)
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1In the four-flavour scheme there is also an explicit bottom quark in the final state.
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H± decay BRs model-dependent ⇒ different searches constrain different scenarios:
▶ Coupling to 3rd-gen fermions is strongest in type II ⇒ Sensitive to τν and tb
▶ The cs channel dominates at low tanβ and low masses
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For intermediate H+ a more involved computation is required due to:
▶ Finite top-width effects
▶ Interference between resonant and non-resonant diagrams

The full process pp → bW−bH+ is required for reliable calculation: arXiv:1607.05291

non-resonant t

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.

(a) (b)

Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)

vahirsch@slac.stanford.edu (Valentin Hirschi), ubiali@hep.phy.cam.ac.uk (Maria Ubiali), mariusw@physik.uzh.ch
(Marius Wiesemann), zaro@lpthe.jussieu.fr (Marco Zaro)

1In the four-flavour scheme there is also an explicit bottom quark in the final state.
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single-resonant t

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.

(a) (b)

Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)

vahirsch@slac.stanford.edu (Valentin Hirschi), ubiali@hep.phy.cam.ac.uk (Maria Ubiali), mariusw@physik.uzh.ch
(Marius Wiesemann), zaro@lpthe.jussieu.fr (Marco Zaro)

1In the four-flavour scheme there is also an explicit bottom quark in the final state.
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double-resonant t

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.

(a) (b)

Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)

vahirsch@slac.stanford.edu (Valentin Hirschi), ubiali@hep.phy.cam.ac.uk (Maria Ubiali), mariusw@physik.uzh.ch
(Marius Wiesemann), zaro@lpthe.jussieu.fr (Marco Zaro)

1In the four-flavour scheme there is also an explicit bottom quark in the final state.

2

neutral scalars

Charged Higgs bosons appear in the scalar sector of several Standard Model (SM) extensions, and are
the object of various beyond the Standard Model (BSM) searches at the LHC. As the SM does not include
any elementary charged scalar particle, the observation of a charged Higgs boson would necessarily point to
a non-trivially extended scalar sector.

In this paper we focus on a generic two-Higgs-doublet model (2HDM), which is one of the simplest SM
extensions featuring a charged scalar. Within this class of models, two isospin doublets are introduced to
break the SU(2) ⇥ U(1) symmetry, leading to the existence of five physical Higgs bosons, two of which
are charged particles (H±). Imposing flavour conservation, there are four possible ways to couple the SM
fermions to the two Higgs doublets [1]. Each of the four ways gives rise to rather di↵erent phenomenologies.
In this work, we consider the so-called type-II 2HDM (although we will discuss how our results can be
generalised to other types), in which one doublet couples to up-type quarks and the other to down-type
quarks and charged leptons.

(a) (b)

Figure 1: Sample LO diagrams for (a) light and (b) heavy charged Higgs production.
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Figure 2: Sample LO diagrams for the full pp ! H±W⌥bb̄ process: (a) non-resonant top-quark contribution; (b) single-
resonant top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

The dominant production mode for a charged Higgs boson depends on the value of its mass with respect
to the top-quark mass, and can be classified into three categories. Light charged Higgs scenarios are defined
by Higgs-boson masses smaller than the mass of the top quark, where the top-quark decay t ! H+b is
allowed and the charged Higgs is light enough so that top-quark o↵-shell e↵ects can be neglected (typically
experimental analyses consider masses up to mH± . 160 GeV). The cross section for the production of
a light charged Higgs boson is simply given by the product of the top-pair production cross section and
the branching ratio of a top quark into a charged Higgs boson, see Fig. 1 (a). The former is known up to
next-to-next-to-leading order in perturbative QCD [2] and displays a 3% QCD scale uncertainty, while the
NLO branching ratio for t ! H+b [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] is a↵ected by a 2% scale uncertainty
due to missing higher-order QCD contributions. Thus the theoretical accuracy for the production of a light
charged Higgs boson is at the few % level. The model-independent bounds on the branching ratio of a light
charged Higgs boson [14] are transformed into limits in the (mH± , tan�) plane, with tan� being the ratio of
the vacuum expectation values of the two Higgs doublets. Direct searches at the LHC, with a centre-of-mass
energy of 7 TeV [15, 16, 17, 18] and 8 TeV [19, 20] set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other hand, correspond to charged Higgs masses larger
than the top-quark mass (typically mH± & 200 GeV). In this case, the dominant charged Higgs production
channel is the associated production with a top quark 1, see Fig. 1 (b). Theoretical predictions at NLO(+PS)
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1In the four-flavour scheme there is also an explicit bottom quark in the final state.

2

Recent predictions for the NLO cross section of pp → bW−bH+ at the LHC:
▶ Focus on Type II 2HDM
▶ Increase cross section by roughly 50% (wrt LO)
▶ Reduce uncertainties by more than factor of 2 (scale variations)

https://arxiv.org/abs/1607.05291
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The H± decay BRs in the hMSSM benchmark scenario are shown below:
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The H± decay BRs in the M125
h benchmark scenario are shown below:
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The doubly-charged Higgs boson can be produced via 3 main processes:

pair production (PP)

q

q
γ∗/Z0

H++

H−−

associated production (AP)

q

q′
W+

H++

H−

vector boson fusion (VBF)

q q′

W+

W+

H++

q q′

H±± decays have unique signatures which can be utilised in direct searches:
type II seesaw model
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For the heavy mH± , the decay into top and bottom quarks is dominant:

▶ Single lepton (ℓ) & OS dilepton (ℓ±ℓ∓)
▶ Categorisation with jet & b-jets multiplicity
▶ Major bkg is leptonic decay of W± in tt
▶ MVA techniques to enhance S

B (BDT & DNN)

g

g

t
b

W−
ν`
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t

b

H+ t

b

b
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postfit DNN distribution for ℓ±ℓ∓
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1 Signal trigger (τh + pmiss
T )

2 At least 1 τ -jet (trigger-matched):
▶ pτh

T > 50 GeV, |η|τh < 2.1
▶ pldg,tk

T > 30 GeV
▶ 1-prong decays
▶ Discriminators against e/µ

3 Isolated electron/muon veto:
▶ pe

T > 15 GeV, |η|e < 2.5
▶ pµ

T > 10 GeV, |η|µ < 2.5
4 At least 3 PF hadronic jets:

▶ pj
T > 30 GeV, |η|j < 4.7

▶ Separated from τh with ∆R > 0.5
5 From selected jets, at least 1 b-jet:

▶ pb
T > 30 GeV, |η|b < 2.5

▶ Tagged with CSV algorithm (medium)
6 pmiss

T > 90 GeV
7 Angular selection Rmin

bb > 40◦

8 Rτ = pldg,tk
T /pτh

T categories (≤ 0.75, > 0.75)
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Backgrounds with genuine τh and e/µ → τh events estimated from simulations.
Misidentified τh background is measured with fake rate method:

▶ signal region (SR)

▶ application region (AR)

▶ inverted region (IR)

▶ normalisation region (NR)

▶ Use samples enriched in misidentified taus by inverting τh isolation
▶ Calculate transfer factors (R) from IR to NR (jet → τh enriched regions):

RIR→NR = NNR

NIR
≃ RAR→SR (1)

▶ Apply RIR→NR to the AR to estimate jet → τh in the SR
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The transfer factors are calculated separately (different q/g content):
▶ For EWK (includes tt) from simulation as REWK

IR→NR = NEWK MC
NR

NEWK MC
IR

▶ For QCD from binned ML fit of pmiss
T templates to data as:

▶ RQCD
IR→NR = f fit

QCD·NData Fit
NR

NQCD Fit
IR

▶ The fraction of QCD events, f fit
QCD, is a fit parameter.

QCD Fit

MET (
GeV)

E
ve

n
t
s

Inverted Region (IR)

QCD Template = Data-EWK

EWK Fit

MET (
GeV)

E
ve

n
t
s

Normalisation Region (NR)

EWK Template (MC)

Final Fit

MET (
GeV)

E
ve

n
t
s

Normalisation Region (NR)

Data Fit
EWK TEMPLATE (MC)
QCD Template (Data)

The combined transfer factor is defined as a weighted average:
▶ RIR→NR = wQCD

AR · RQCD
IR→NR + (1 − wQCD

AR ) · REWK
IR→NR

with wQCD
AR being the QCD purity in AR.
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The measurement is performed in pT and |η| bins of the τh to:
▶ Minimise correlations of the pτh

T - pmiss
T variables

▶ Mitimage geometrical differences in detector response

∴ The jet → τh background measurement in the SR is thus given by:

N jet → τh
SR =

τh bins∑
i

(NData
AR, i − NEWK genuine τh

AR, i − NEWK e/µ → τh
AR, i ) × RIR→NR (2)

The systematics uncertainties accounted for include:
▶ The RIR→NR stat. uncertainties (normalisation uncertainty)
▶ Difference in the mT shape in SR and AR (shape uncertainty)
▶ All uncertainties related to the simulated samples
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Both analyses selected fully-hadronic final states by enforcing lepton vetoes:
Resolved t

1 ≥ 7 AK4 jets, ≥ 3 b-tags
2 HT > 500 GeV
3 2 resolved tops with BDTG ≥ 0.4

custom tagger trained in tt sample
signal

t

b

q

q

bkg

t

b

q

q

bkg

t

b

q

q

bkg

t

b

q

q

4 Reconstruct mH± using tetrajet from:
▶ leading in pT resolved top
▶ leading in pT free b jet

5 Search for excess in the mtb spectrum

Boosted W±/t
1 ≥ 1 AK8 jets, ≥ 1 b-jets
2 Jet substructure used for W±/t tag

Boosted W±

▶ τW
21 < 0.6

▶ mW
SD ∈ [65, 105]

▶ 0 b-subjets

Boosted t
▶ τ top

32 < 0.67

▶ mtop
SD ∈ [135, 220]

▶ 0 or 1 b-subjets

3 Reconstruct mH± from AK8+AK4

Boosted W±

▶ W+b+b

▶ W+b+j

Boosted t
▶ t0b+b

▶ t1b+b
4 Nj , Nb, ∆mH± categorisation
5 Search for excess in HT of ∆mH±
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Resolved t

▶ Minor Genuine-b estimated
from simulation

▶ Main Fake-b measured from
data by inverting top- &
b-tagging selections

NSR
i =

∑
i

NAR
i ·

(
NCR1

i
NCR2

i

)
i runs over pT and η bins

Boosted W±/t

▶ Dominant QCD multijet (∼ 90%)
▶ Shape from CR: Mirror (invert τW

21 and τ top
32 )

▶ Norm from below/above ∆mH± (sidebands)
▶ tt with CR: Single Leptonic

▶ 1ℓ with 10 < pT < 35 GeV
▶ The CRs and SRs are simultaneously fitted to:

▶ determine normalisation
▶ determine shape of the bkg distributions
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Combination of H± → tb leptonic & H± → tb hadronic final states:
▶ Single lepton dominates entire mH± spectrum
▶ Dilepton sensitive at low mH± region (∼ 20% gain)
▶ Hadronic ∼comparable to dilepton at low mH±

▶ Hadronic competes with Single lepton at 3 TeV (∼ 30% gain)
Combination H± → τ±ντ + H± → tb leptonic is also shown

upper limit of 9.25 pb – 5 fb
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In type II 2HDMs a light mH± decays predominantly to cs for low tanβ values:

▶ Require 1ℓ, ≥ 4 jets (≥ 2 b-tagged), pmiss
T

▶ Top kinematic fit (KF) with mt constraints
▶ Categorisation based on c-tagging (L,M,T)
▶ Fit discriminant is mjj of 2 non-b jets
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First LHC search for light mH± decaying to WA in any range of mH± :

▶ Target eµµ or µµµ with A0 → µ+µ−

▶ B
(
A0 → µ+µ−)

small but high εµ
ID and σ(pµ

T)
pµ

T

▶ Major bkg is tt with nonprompt leptons
▶ Excess search in mass windows w of mµ+µ−
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Upper limits at 95% CL on B (t → bH+) · B
(
H± → W±A0)

· B
(
A0 → µ+µ−)

:

▶ Based event yields in w from eµµ & µµµ

▶ Upper limit between 0.63 – 2.9%
▶ Sensitivity dominated by stat. uncertainty
▶ Limit difference smaller than uncertainties

t̄

t

b̄

b

H+

W−

q′/ℓ−

q̄/ν

W+

A

ℓ+/ q̄′

ν/q

µ+

µ−

mH± = mA0 + 85 GeV

20 30 40 50 60 70
 (GeV)Am

0

1

2

3

4

5

6

7

8

9

) 
(%

)
+

bH 
→ 

(t
Β

95
%

 C
L 

up
pe

r 
lim

it 
on

 

68% expected

95% expected

Median expected

Observed

 (13 TeV)1−35.9 fbCMS

µµµ+µµe

GeV 85 + Am = +Hm

1 = A)+W → +(HΒ
4−10×3 = )µµ → (AΒ

mH± = 160 GeV

20 30 40 50 60 70
 (GeV)Am

0

1

2

3

4

5

6

7

8

9

) 
(%

)
+

bH 
→ 

(t
Β

95
%

 C
L 

up
pe

r 
lim

it 
on

 

68% expected

95% expected

Median expected

Observed

 (13 TeV)1−35.9 fbCMS

µµµ+µµe

GeV 160 = +Hm

1 = A)+W → +(HΒ
4−10×3 = )µµ → (AΒ



Dr
aft

Additional Material H±± → W±W± arXiv:1905.07445 42/43

In the GM model H± and H±± are produced via VBF:

▶ Semileptonic WV (1ℓ) and ZV (2ℓ) decays
▶ Hadronic V reconstructed as AK8 (τV

21 < 0.55)
▶ Leptonic W reconstructed from solving the pν

z

▶ Major bkg is W+jets (WV) and Z+jets (ZV)

q q′

W±

W±

H±±
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W±q q′

Signal extraction with fit to mWV
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▶ Use WV & ZV to extract limits on
σVBF · B

(
H± → W±Z0)

▶ Use WW channel to extract limits on
σVBF · B (H±± → W±W±)

▶ Combine WV , ZV , WW for GM model limits
▶ Exclude sH > 0.53 for mH5 = [0.6, 2] TeV
▶ Theoretically inaccessible

interpretation in GM model

) (GeV)
5

(Hm
1000 1500 2000

H
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CMS  (13 TeV)-135.9 fb

Observed

Expected

68% expected

95% expected

(H) > 0.1m(H)/Γ

WV channel

) (GeV)±(Hm
1000 1500 2000

Z
) 

(f
b

)
±

 W
→±

 B
(H

×
) ±

(H
V

B
F

σ

1

10

210

310

CMS  (13 TeV)-135.9 fb

νlqq→Z±W→±H

Observed

Expected

68% expected

95% expected

ZV channel

) (GeV)±(Hm
1000 1500 2000

Z
) 

(f
b

)
±

 W
→±

 B
(H

×
) ±

(H
V

B
F

σ 10

210

310

CMS  (13 TeV)-135.9 fb

'llqq→Z±W→±H

Observed

Expected

68% expected

95% expected

WW channel

) (GeV)±±(Hm
1000 1500 2000

) 
(f

b
)

±
W±

 W
→ ±±

 B
(H

×
) ±±

 (
H

V
B

F
σ 1

10

210

310

CMS  (13 TeV)-135.9 fb

ν'lqq→±W±W→±±H

Observed

Expected

68% expected

95% expected


	
	Introduction
	Beyond the SM Higgs Sector
	Overview of Run II searches

	
	2HDM
	H    leptonic+hadronic arXiv:1903.04560
	H tb hadronic arXiv:2001.07763

	
	HTM
	H W Z0  and H W W  leptonic arXiv:2104.04762

	
	2HDM+S
	H0 h0125 h0s bb  arXiv:2005.08900
	H0 a a  boosted arXiv:2005.08694
	X a a bbbb boosted CMS-PAS-B2G-20-003

	
	Summary
	& Outlook

	Questions?
	Acknowledgements
	Additional Material
	Navigation
	MSSM benchmark scenarios
	Particle flow algorithm
	Embedding technique for  backgrounds
	Charged Higgs boson Production
	Singly-charged Higgs boson
	Doubly-charged Higgs boson
	CMS H tb leptonic  arXiv:1908.09206
	CMS H    hadronic  arXiv:1903.04560
	CMS H tb hadronic  arXiv:2001.07763
	CMS H cs  arXiv:2005.08900
	CMS H W A0   arXiv:1905.07453
	H W W   arXiv:1905.07445


