

Introduction

- The Higgs boson has been observed decaying to
 - Massive vector bosons (Z, W) and photons
 - Third generation charged fermions (b,T)
 - Coupling to top quarks observed (ttH)
- The interaction to the 1st and 2nd generation fermions not observed
- New physics can be probed from SM deviations:
 - In rare decay measurements
 - In Higgs BSM decay modes

Decay	BR (%)
$H \rightarrow bb$	58
$H\toWW$	21.6
Н → тт	6.3
H → cc	2.9
$H \rightarrow ZZ$	2.7
$H \to \gamma \gamma$	0.23
$H\to Z\gamma$	0.115
$H \to \mu \mu$	0.022

$H \rightarrow \mu\mu$

- Most sensitive probe of H couplings to 2nd generation fermions
- Fit the Higgs boson peak dimuon mass:
 - Narrow resonant peak at 125 GeV (few percents resolution) from MC signal
 - SM smooth falling background from data
- Require at least 2 well isolated muons with opposite charges (p_T >20 GeV, $|\eta|$ <2.4)
 - Muon tracks refitted using primary vertex information (3-10% improvement)
 - Final state radiation (FSR) energy recovered (3% improvement)

[JHEP 01 (2021) 148]

- The search is divided by the production modes, for which multivariate discriminators are trained:
 - Leptonic and Hadronic ttH
 - VBF (bkg estimated from MC, fit BDT score)
 - WH and ZH
 - o ggH
- Categories with different signal purity chosen from MVA discriminator scores

$H \to \mu \mu$

- Results: evidence of $H \rightarrow \mu\mu$
 - \circ p-value: 3.0 σ (2.5 σ exp.)
 - \circ $\mu = 1.19 \pm 0.40$ (stat) ± 0.15 (syst) \rightarrow statistically limited
 - No deviation from SM observed

$H \rightarrow cc$

- Most sensitive probe of H couplings to 2nd generation quarks
- VH (H → cc):
 - Heavily relying on charm-tagging [JINST 13 (2018) P05011]
 - Highly contaminated with hadronic backgrounds
 - VH production mode provides clean event signature (triggering and QCD suppression)

[JHEP 03 (2020) 131]

- 3 decay channels: 0-lepton, 1-lepton, 2 lepton
- 2 Higgs decay topologies:
 - 2 resolved jets: Signal extraction from BDT
 - 1 merged jet: Signal extraction from Higgs candidate mass, using additional kinematic BDT selection

Results with 2016 data:

- 70(37)xSM observed (expected)
- Expect improvement with full Run 2 analysis

Higgs BSM decays

- Higgs decay to BSM particles is possible from Run2 results:
 - \circ B_{BSM} \lesssim 35% (95% CL intervals)
 - Given the small Γ_H = 4.1 MeV, even small couplings with BSM particles, $\sim O(10^{-2})$, yield Br(h \rightarrow BSM)=10%

Type IV, $\tan \beta = 0.5$

[Eur. Phys. J. C 79 (2019) 421]

Many possible BSM models:

- 2HDM+S: H→aa
- SUSY and Composite Higgs: LFV H decays
- Higgs Portal: H→invisible

Many Higgs decay modes were tested with CMS data:

- $0 \quad H \rightarrow aa \rightarrow bbbb, H \rightarrow aa \rightarrow \mu\mu bb, H \rightarrow aa \rightarrow bbtt, H \rightarrow aa \rightarrow \tau\tau\tau\tau, H \rightarrow aa \rightarrow \mu\mu\tau\tau, H \rightarrow aa \rightarrow \mu\mu\mu\mu$
- \circ H \rightarrow aa \rightarrow $\gamma\gamma\gamma\gamma$ (full Run2 data)
- H → μτ/eτ (full Run2 data)
- H→invisible: Jets+MET (2017-2018 data)

[Phys. Rev. D 90, 075004 (2014)]

$H \to aa \to \gamma\gamma\gamma\gamma$

- First search of this type for CMS
 - o ATLAS Run1: [EPJC 76 (2016) 210]
- Model independent analysis with 4 fully resolved γ 's, $m_a \! \in \! [15, 60] \; \text{GeV}$
 - o photon pairs have wide opening angle
 - photons reconstructed separately
- In theoretical models:
 - Coupling of 'a' to fermions can lower BR(a $\rightarrow \gamma\gamma$)
 - Low background in 4γ's

[CMS-PAS-HIG-21-003]

- Categorization BDT, after base selections on 4γ's:
 - \circ Exploits the identification and kinematic information of γ and 'a'
 - Data driven description of background obtained by mixing photons between events (only used for training)
 - Parametric training: output uniform and sensitive to full m_a range
- BDT selection:
 - Optimized by maximizing S/\sqrt{B} for all the possible categories
 - For each m_a only the best category is chosen

$H \to aa \to \gamma\gamma\gamma\gamma$

Signal model:

- Built from MC for each nominal m_a
- Modelled using double sided crystal ball function

Background model:

- Built from selected data (3 years merged) for each nominal m_a
- Modelled using Envelope method

• Reults:

No excess and observed limits are in agreement with the expected limits

LFV in H $\rightarrow \mu\tau/e\tau$

Lepton Flavor Violation (LFV):

- Y_{eu}, Y_u, Y_e Yukawa couplings in SUSY and Composite Higgs models
- From electron and muon magnetic moments: $B(H \rightarrow \mu \tau) \approx 10\%$ and $B(H \rightarrow e \tau) \approx 10\%$
- Results with full Run2: No deviation from SM $B(H\to \mu\tau) < 0.15\%$ and $B(H\to e\tau) < 0.22\%$

Analysis strategy:

- Decay channels: μT_h , μT_e , $e T_h$, and $e T_{\mu \nu}$
- Categories: 0 jets, 1 jet, 2 jets ggH and 2 jets VBF (m., discriminant)
- Backgrounds estimated from data and simulation
- A BDT is trained for each final state and category and fit BDT distributions

Phys. Rev. D 104 (2021) 032013

Jets+MET in H → inv

- Higgs portal scenario:
 - DM particles are produced in decays of the Higgs
 - From other measurements: $B(H\rightarrow inv)<25\%$
- Analysis strategy:
 - Channel: V→qq (boosted regime)
 - Categories: Low purity and high purity (on DEEPAK8 score) Mono-V and Mono-Jet (AK4 jets)
 - Simultaneous fit of MET distribution in data/MC SR and CRs

Summary

- The Higgs boson has been observed decaying to W,Z, photons, b and T
- New physics can be probed from SM deviations:
 - In rare decays measurements: $H \rightarrow \mu\mu$, $H \rightarrow cc$
 - First evidence of H→µµ
 - No deviation from SM was found

- In BSM H decays:
 - 2HDM+S:

H→aa in many final states

- **SUSY and Composite Higgs:** LFV H decays
- **Higgs Portal:** H→invisible
- No significant deviation or excess has been found, many scenarios were excluded, but some phase spaces are still uncovered
- Further improvements will be obtained with full Run2 data analyses, Run3 data, and finally with HL-LHC data

BACKUP

$H \rightarrow \mu\mu$: Analysis strategy

- The search is divided by the production modes, for which multivariate discriminators are trained:
 - Leptonic (Hadronic) ttH: ≥1 b jets, 1 (2) add. leptons (dominated by tt and ttZ backgrounds)
 - VBF: no b jets, no additional leptons, VBF selection
 - WH (ZH): no b jets, 1 (2) additional leptons (dominated by WZ/ZZ background)
 - ggH: no b jets, no additional leptons, VBF veto (dominated by DY background)

- Signal extracted from MC simulation
- Background categories estimated from data (non-VBF categories)

- o background estimated using MC templates
- +20% improvement in expected sensitivity

H rare decays

- $H \rightarrow Z \rho/\phi$: [JHEP 11 (2020) 039]
 - $B(H\to Z\rho) = (1.4\pm0.1)\times10^{-5}$ and $B(H\to Z\phi) = (4.2\pm0.3)\times10^{-6}$
 - $Z\rightarrow ee/\mu\mu$, $\rho\rightarrow\pi\pi$ and $\phi\rightarrow KK$ decay channels
 - 2HDM with SFV predicts enhancement of the Yukawa coupling up to 30, 500, and 2000 for s, d, and u quarks
 - Analysis performed on Run2 data and no excess is found. Limits on BR:
 - $B(H \to Z\rho): 740-940 \times B_{cm}$
 - B(H \rightarrow Z ϕ): 730-950xB_{SM}
- $H \rightarrow J/\psi \gamma \rightarrow \mu\mu\gamma$: [Eur. Phys. J. C 79 (2019)94]
 - $B_{SM}(H \to J/\psi \gamma) = (3.0 \pm 0.2) \times 10^{-6}$
 - Analysis performed on 2016 data, $J/\psi \rightarrow \mu\mu$ channel
 - Obtained 95% CL upper limit: BR<7.6x10⁻⁴ (260 x B_{SM})
- $H \rightarrow \ell \ell \gamma$: [JHEP 11 (2018) 152]
 - Search performed in two channels:

 - $H \rightarrow \gamma^*(\mu\mu)\gamma \ (m_{\mu\mu} < 50 \ GeV) \ [BR_{SM} = 3.8 \times 10^{-5} \]$ $H \rightarrow Z(\ell\ell)\gamma \ (m_{\mu\mu} > 50 \ GeV) \ [BR_{SM} = 5.1 \times 10^{-5} \]$
 - 95% CL upper limit: $\mu < 3.9 \ (\mu < 2.0 \ \text{exp.})$

$H \rightarrow aa \rightarrow \gamma\gamma\gamma\gamma$: Workflow

Online selections	 Diphoton trigger selections (online) and preselections (offline)
	:
Object selections	 Selections on photon and vertex object to select 4 resolved and well identified γ's Construct pseudoscalar and Higgs object with 4γ's
	: :
Event	Use photon and pseudoscalar kinematics and identification to establish a venter and in the second sec
categorization	identification to categorize events
categorization	identification to categorize events
Final results	Perform likelihood fit of signal and background m _{yyyy} distributions to obtain final results

$H \rightarrow aa \rightarrow \gamma \gamma \gamma \gamma$: Event Mixing

- Artificially create background shape by shuffling photons between events
- Idea: after full event selection, replace 3 of the 4 selected photons by photons in other events
- The procedure can be repeated multiple times: covers full phase space of the background
- Results in good description of background shape

Other $H \rightarrow$ aa modes

- $H \to aa \to \mu\mu bb: [PLB 795 (2019) 398]$
 - Uses double muon trigger paths, and a \rightarrow bb has a large BR
 - Exclusive categorization based on the b-tagging to improve sensitivity
 - Background modelled on data via the envelope method
 - 0 No excess and observed limits are in agreement with the expected limits

- Boosted regime $m_a \in [3.6, 21]$ GeV as BR($a \rightarrow \tau \tau$) dominates if $m_a < 2m_b$
- Background modelled on data, taking into account J/Ψ , Ψ ' and Υ resonances for m
- No excess and observed limits are in agreement with the expected limits

2HDM+S: $H \rightarrow aa$

2HDM+S: $H \rightarrow aa$

