

Results and prospects in the electroweak symmetry breaking sector

September 20-22, **2021** Orsay-Paris, France

Di-Higgs searches with bottom quarks

Loukas Gouskos (CERN) on behalf of the CMS Collaboration

Set the scene

Searches with b quarks play an important role in the LHC physics program

- Today's talk: Recent CMS results w/ <u>boosted</u> Higgs bosons decaying to b quarks
 - Particularly focus on the latest tools and techniques developed to enhance sensitivity
 - e.g., jet identification ("tagging"), jet mass regression, search design
- Full suite of results: <u>CMS-B2G-analyses</u> , <u>CMS-HIG-analyses</u>

General strategy

- Focus on scenarios that produce Higgs bosons with high-p_T ("boosted"):
 - i.e., decay products can be reconstructed as a single jet
- Target H→bb final states (largest BR)

Traditional approach

 Higgs decay products resolved in two "small-R" jets (R=0.4)

"Merged-jet topology"

- A single "large-R" jet to reconstruct the H→bb decay
- Better RECO efficiency at high-p_T
- Exploit the correlation between the two bottom quarks
- Reduced combinatorial BKG

The challenge: bottom quark identification

Jet flavour identification ("tagging"): Topic of high interest in both TH and EXP

Main handles:

- Jet mass [*]
- Jet substructure: identify the 2-prong structure in a single large-R jet
- Jet flavor: Identify the 2 bottom quarks
- Challenges: pile-up, soft-radiation, etc..
- Enormous progress over the last few years:

Search for light Higgs boson pairs in SUSY cascades

Search for light Higgs bosons in SUSY

- Search of a pair of boosted light Higgs bosons in SUSY cascades
- Hot off the press! HIG-20-018

CMS

in the NMSSM SUSY extension to SM

- Model parameters:
- **m**_{susy}: mass scale of squarks/gluinos
- **m**_{H1}. : mass of CP-even Higgs
- $R_m = m_{NLSP}/m_{H1} = 0.99$ [never explored at the LHC]
- $\Delta m = m_{NLSP} m_{H1} m_{LSP}$

- Signature: Multiple (b-) jets, high-p_T Higgs bosons, very little ME_T
- Search strategy:
 - Target $H_1 \rightarrow bb$ [largest BR] reconstructed as a single large-*R* jet: bb-tagging critical
 - No requirement on ME_T; disjoint regions in H_T to probe the SUSY scale

Search design

- H→bb cand: Identified using Double-b algorithm; jet mass RECO w/ softdrop
- Signal extraction: 2D fit of the mass of the two leading bb-tagged jets
- Dominant BKG: QCD multijet estimated from data [subdominant ttbar from MC]

BKG estimation

- QCD contribution in SRs from signal depleted mass sidebands (CRs)
- CRs designed to have similar yield as the corresponding SRs
- Correction factor extracted by inverting the double-b selection
 - Signal depleted region
- Prediction:

$$\hat{S}_i^{\mathrm{TR}} = F_i \cdot \hat{U}_i^{\mathrm{TR}}$$
,

*F*_i: True ratio of SR vs mass sideband yields obtained in the double-b inverted data region

Results

No statistically significant excess observed

Interpretation

■ 1st limits on this signature [i.e., low ME_T] at the LHC

Resonant HH production to 4b or bb+L(L) final states

[Disclaimer: Only flash main points of the two searches and provide pointers to further info]

$\rm X \rightarrow HH \rightarrow 4b$

Search strategy: Split in two main analysis categories

CMS

11

- Boosted: $H \rightarrow bb$ candidates reconstructed as two large-*R* jets
 - identified using DeepAK8 algorithm [2.5x improved sensitivity vs. Double-b]
- Semi-resolved: One large-*R* and two small-*R* jets to reconstruct Higgs candidates
 - small-R jet b-tagging using DeepJet [<u>ref</u>]
- BKG estimation: Main QCD bkg from data [based on DeepAK8 & m(j)]
 - ttbar: templates from MC; corrections extracted from data CRs
- Signal extraction: 2D fit of reduced HH mass (m_{red}) and leading jet mass (m_J)

$X \rightarrow HH \rightarrow 2bL(L)$

CMS

Search strategy:

- \rightarrow H \rightarrow bb: A large-R jet identified using DeepAK8
- Leptonic leg: $H \rightarrow WW^*$ or $H \rightarrow \tau\tau$
 - **1L** and **2L** subcategories; in 1L W \rightarrow qq reconstructed as a large-*R* jet [using τ_{21}]
- BKG estimation from data: Templates from MC w/ generous pre-fit unc.
 - Sophisticated approach: templates morph to account data-mc differences
 - Post-fit uncertainties constrained
- Signal extraction: 2D fit of m_{HH} and m_{bb} mass

Strongest limits to date in this channel

Nonresonant VBF HH → 4b production

Nonresonant VBF HH→4b production

14

- Higgs pair production: Usually searched for in the ggF channel (σ ~31 fb)
- VBF production: powerful probe of BSM physics [but very rare: σ~1.7 fb]
 - provides direct sensitivity to the VVHH (κ_{2V}) coupling

VBF HH \rightarrow 4b: search strategy in a nutshell

- Target the boosted regime and the 4b final state [largest possible BR]
 - Each Higgs boson reconstructed using large-*R* jets [*R*=0.8]
- Cornerstone of the search:
 - ♦ Identification of the H→bb candidates
 - Also: as precise as possible reconstruction of the large-*R* jet mass

Significant developments on these fronts

- A simple and robust VBF selection:
 - Two highest p_T small-*R* jets (R=0.4)
 - Large separation in η : $\Delta \eta$ (jj) > 4.0 and large dijet mass (m_{ij}>500 GeV)
- Fit m_{HH} for signal extraction
 - Dominant BKGs estimated from data

Pushing the limits in jet tagging

Label

PRD 101 (2020) 5, 056019 CMS-DP-2020-002

Category

- ParticleNet: Novel algorithm w/ improved jet representation & network arch.
 - Jet represented as a "particle cloud"
 - Architecture: Graph Neural Networks [i.e., DGCNN add ref]
 - Input: PFcands & SV, Output: W/Z/H/top/QCD + decays; [same as DeepAK15]
- Follow a hierarchical learning approach
 - First: Learn "local" structures; Then: move to more "global" features
 - Treat the particle cloud as a graph
 - Particles are the vertices of the graph
 Relationships between the particles are the edges of the graph

Pushing the limits in jet tagging (II)

bb-tagging discriminant:

 $D_{bb} = \frac{\text{score}(X \to b\overline{b})}{\text{score}(X \to b\overline{b}) + \text{score}(\text{QCD})}$

PRD 101 (2020) 5, 056019 CMS-DP-2020-002

- Calibration in data using proxy jets from gluon→bb
 - Data-MC correction factors typically ~1 with ~20% uncertainty

Large-R jet mass regression

- Jet mass: powerful observable to discriminate signal (e.g., H→bb jets) from BKGs [e.g., QCD jets]
 - but very sensitive to soft radiation, pileup, ...

CMS

- Grooming techniques [e.g., SoftDrop] have been developed to mitigate this effect:
 - Iteratively decluster the jet and remove constituents that are:
 - soft and/or wide angle
 - Pros: simple and well tested in data
 - Cons: some inefficiency
 - e.g., some two prong jet identified as 1-prong
- Decays to bb/cc:
 - additional energy loss via the (undetected) neutrinos from semileptonic decays

Large-R jet mass regression (II)

- Develop algorithm to reconstruct jet mass with best possible scale & resolution
 - Meanwhile: avoid "sculpting" of the QCD jet mass distribution
- Exploit ParticleNet architecture to predict m(jet) directly from jet constituents
 - Same inputs (PF candidates + SV) and same training configuration as for jet tagging

Large-R jet mass regression: Performance

- Mass resolution stable across m(X)
- No indication of mass sculpting even for very tight WPs
- Up to ~20-25% improvement in analysis sensitivity with $H \rightarrow bb/cc$
- Calibration using W jets: scale (resolution) correction < 1% (3%)

CMS

Signal extraction

- Analysis carried out in three disjoint categories based on the bb-discriminant of the Higgs candidates
- Fit m_{HH} QCD and ttbar templates, in each of the three analysis categories
 - QCD estimated from data using an ABCD method [back-up]

- Prediction agrees well with observed data
- Expected contribution for κ_{2V} =0 shown for illustration
- 1st analysis to use ParticleNet [more analyses in the pipeline]

all other couplings fixed to SM values

Interpretation

- Allowed values: 0.6 < κ_{2V} < 1.4</p>
- strongest constraints on κ_{2V} to date:
 - ATLAS: -0.6<κ_{2V}<3.1 [JHEP07(2020)108]
 - CMS [resolved]: -0.4<κ_{2V}<2.5 [<u>HIG-19-018</u>]
- 1st time to exclude $\kappa_{2V} = 0$ hypothesis
- κ_{V} and κ_{2V} • For all values with $\kappa_V > 0.5$,
 - "confirms" existence of the HHVV coupling

Understanding interplay between

 κ_{2V}

CMS

- Single-Higgs measurements provide the tightest constraints on κ_V
 - Combined measurement: κ_v ~1.1 w/ O(20%) at 2σ

• $\kappa_{2V} = 0$ hypothesis highly disfavored when constraints on κ_V are considered

CERN

 κ_{2V}

Summary

- Searches with boosted Higgs bosons and multiple bottom quarks in the final state are of particular importance for the success of the LHC physics program
 - a small subset shown today
- Enormous effort in both the Theory and Experiment communities to improve existing jet tools
 - Developments in jet tagging traditionally led the way
 - Now extended to other areas: e.g., jet mass regression
- More sophisticated techniques and/or analyses targeting different topologies [e.g., VBF HH in boosted regime] have been exploited
- All these efforts pay off yielding substantial improvements in the sensitivity of the physics analyses;
 - reaching already sensitivity expected with [much] much more data

Backups

diHiggs in SUSY

m_{susy} = 2 TeV

m_{susy} = 2.6 TeV

- Signal acceptance ~constant for 40<m_{H1}<125 GeV
 - σ x BR limits ~constant [for given m_{SUSY}]
- Strong drop in signal acceptance for m_{H1}<40GeV

$X \rightarrow HH \rightarrow 4b$: ATLAS vs. CMS

More details: ATLAS-CONF-2021-035 CMS-B2G-20-004

$X \rightarrow HH \rightarrow 2bL(L)$

- Selection: ME_T, angular variables b/w ME_T and L(L), m_{LL}
- **BKG estimation:** dominant tt BKG split in 4 categories (top, W, lost t/W, q/g)
 - Build inclusive templates: relax selection to increase stats
 - Modeling methods:
 - non-resonant: KDE
 - resonant: double-sided CB
 - Fit model accounts for correlations b/w m_{HH} and m_{bb}:

 $P_{\rm bkg}(m_{\rm b\overline{b}},m_{\rm HH}) = P_{\rm b\overline{b}}(m_{\rm b\overline{b}}|m_{\rm HH},\theta_1)P_{\rm HH}(m_{\rm HH}|\theta_2),$

Validation regions: invert AK4 jet veto (ttbar CR), low DeepAK8 score (non-bb)

Training details

- Samples: Dedicated samples to populate the full mass range
 - equal amount of QCD, X->bb, X->cc, X->qq jets [X: scalar w/ different masses]

- Target mass:
 - Signal: X pole mass [15-250 GeV]
 - Background: Generated softdrop mass

Loss function:

$$L(y, y^p) = \sum_{i=1}^n \log(\cosh(y_i^p - y_i))$$

Performance

Signal jets: H->bb

Background jets: QCD

- Substantial improvement in both mass scale & mass resolution
- Tails in m(SD) significantly reduced

Performance (II)

Signal jets: H->cc

Signal jets: H->qq

- Improvement for all jet flavours

Putting pieces together

H->bb candidates: two jets with highest bb-discriminant

Background estimation

- Main background from QCD events; estimated directly from data
 - Smaller contribution from ttbar estimated using MC w/ necessary corrections from ttbar dominated control regions (CRs)
- Data-driven QCD estimation relies on an ABCD method
 - Define QCD-enhanced CRs (A, B, C) by inverting ParticleNet score and/or jet mass selection of the subkeading jet
- Key: jet mass decorrelation of ParticleNet • i.e., tagger's response is Transfer factors independent of the jet mass Jet mass В sidebands Prediction in SR: $N_{\text{OCD},i}^{\text{D}} = w_i \times N_{\text{OCD},i}^{\text{C}}$ Application of transfer factors Jet mass close to m_H Signal region • where TF = w_i = Control region Low High ParticleNet ParticleNet Full analysis validated in data samples score score orthogonal to the SRs [3 analysis categories] Higgs Hunting 2021; DiHiggs searches in CMS Loukas Gouskos 33