Vector Boson Scattering ATLAS-CMS comparison Introduction to the discussion session

N. Lorenzo Martinez, LAPP Annecy A. Vagnerini, INFN U. Turin A.-M. Magnan, Imperial College London

21/09/2021 - Higgs Hunting 2021

.

ATLAS/CMS comparison: channels and integrated luminosity

Channel	Final state	ATLAS	CMS
ssWW	ℓℓ+2j	36 fb ⁻¹	137 fb ⁻¹
VV+2j	$ZZ \rightarrow 4\ell$	139 fb ⁻¹	137 fb ⁻¹
	$WZ \rightarrow 3\ell$	36 fb ⁻¹	137 fb ⁻¹
	$ZZ \rightarrow \ell\ell\nu\nu$	139 fb ⁻¹	-
	$ZV \rightarrow \nu \nu \eta q$	35 fb ⁻¹	-
	$WV \rightarrow \ell \nu qq$	35 fb ⁻¹	137 fb ⁻¹
	$ZV \rightarrow \ell \ell q q$	35 fb ⁻¹	-
$Z\gamma$	$\ell\ell\gamma$ +2j	139 fb ⁻¹	137 fb ⁻¹
	$\nu\nu\gamma+2j$	139 fb ⁻¹	-
$W\gamma$	$\ell\ell\gamma+2j$	-	35.9 fb ⁻¹

ATLAS/CMS comparison: fiducial requirements

Channel	FS	ATLAS	CMS
ssWW	ℓℓ+2j	$p_T^\ell >$ 27 GeV, $m_{/\!\!/} >$ 40 GeV	$p_T^\ell > 25, 20~{ m GeV}, m_{/\!\!/} > 20~{ m GeV}$
		$p_{\mathcal{T}}^{j} > 65, 35~{ m GeV}, { m M}_{jj} > 500~{ m GeV}, \Delta y_{jj} > 2$	$p_{T}^{j} > 50~{ m GeV}, M_{jj} > 500~{ m GeV}, \Delta\eta_{jj} > 2.5,$
			$z_{\ell}^{*} < 0.75$
VV+2j	$WZ{\rightarrow}\; 3\ell$	$p_T^\ell > 15, 15(Z), 20(W) \text{ GeV}, m_{II} - m_Z < 10 \text{ GeV}, m_T^W > 30 \text{ GeV}$	$\begin{array}{l} p_{T}^{\ell} > 25, 10(Z), 20(W) \; \text{GeV}, \; m_{I\!I} - m_{Z} < \\ 15 \; \text{GeV}, \; m_{\ell\ell\ell} > \; 100 \; \text{GeV}, \; \text{MET} > \; 30 \; \text{GeV}, \\ & \max(z_{\ell}^{*}) < 1 \end{array}$
		$p_{\mathcal{T}}^{J}>$ 40 GeV, η^{j1} , $\eta^{j2}<$ 0, $M_{jj}>$ 500 GeV	$p_{\mathcal{T}}^{J} >$ 50 GeV, M $_{jj} >$ 500 GeV, $\Delta \eta_{jj} >$ 2.5
	$ZZ{\rightarrow}~4\ell$	$p_T^\ell > 20, 20, 10, 7 \; ext{GeV}, 66 < m_{ } < 116 \; ext{GeV}, \Delta R_{ } > 0.2$	$p_T^\ell > 20, 10, 5, 5 \text{ GeV}, 60 < m_{II} < 120$ GeV, $M_{4\ell} > 180$ GeV
		$p_T^j > 30(40 \text{ if } 2.4 < \eta < 4.5) \text{ GeV},$ $\eta^{j1}.\eta^{j2} < 0, M_{ii} > 300 \text{ GeV}, \Delta \gamma_{ii} > 2$	$p_{\mathcal{T}}^{j} > 30 \; { m GeV}, \; { m M}_{jj} > 100, 400, 1k \; { m GeV}, \ \Delta \eta_{jj} > 2.4$
	$WV \rightarrow \ell \nu qq$	Boosted (J $\Delta R = 0.8$) and Resolv	red (jj $\Delta R = 0.4$) V(qq) topologies.
		p_T^{ℓ} > 27(veto 7) GeV, MET> 80 GeV	$p_T^{\ell} > 30(\mu), 35(e)$ (veto 10) GeV, MET> 30 GeV, m _T (W) < 185 GeV
		V-tag p $_{\mathcal{T}}^{j}>$ 20(30 if 2.4 $< \eta <$ 4.5) GeV,	V-tag p $_{\mathcal{T}}^{j} >$ 30 GeV, p $_{\mathcal{T}}^{J} >$ 200 GeV
		$ \mathbf{p}_T^J>$ 200 GeV, $ \eta^J <$ 2	
		${\sf p}_{T}^{j}>$ 30 GeV, η^{j1} . $\eta^{j2}<$ 0, ${\sf M}_{jj}>$ 400 GeV	$p_{\mathcal{T}}^{j} >$ 30 GeV, M $_{jj} >$ 500 GeV, $\Delta \eta_{jj} >$ 2.5
Ζγ	<i>ℓℓγ</i> +2j	$p_{T}^{\ell} >$ 30, 20 GeV, $m_{I\!I} >$ 40 GeV, $E_{T}^{\gamma} >$ 25 GeV, $\Delta R(I,\gamma) >$ 0.4	$p_T^\ell > 25(ee), 20(\mu\mu) \; GeV, 70 < m_{ } < 110$ $GeV, E_T^\gamma > 20 \; GeV, \Delta R(I,\gamma) > 0.7$
		$M_{ } + M_{ \gamma} > 182 ext{GeV}, \zeta_{ \gamma} < 0.4$	$M_{\parallel \gamma} >$ 100 GeV, $\eta^* <$ 2.4
		p $_{\mathcal{T}}^{J}$ > 50 GeV, M $_{jj}$ > 150 GeV, Δy_{jj} >	p $_{T}^{\prime}$ $>$ 30 GeV, M $_{jj}$ $>$ 500 GeV, $\Delta\eta_{jj}$ $>$
		1, $\Delta R(\gamma, j) > 0.4$, $\Delta R(\ell, j) > 0.3$, Njets ^{Gap} = 0	2.5, $\Delta R(\gamma, j) > 0.5$, $\Delta R(\ell, j) > 0.5$, $\Delta \Phi(Z\gamma, jj) > 1.9$

ATLAS/CMS comparison: experimental methods

Channel	FS	ATLAS	CMS
ssWW	ℓℓ+2j	36 fb ⁻¹	137 fb ⁻¹
		fit with 30 bins (5 Mjj $ imes$ 6 lep-lep) + WZ CR	2D fit M_{ii} - $M_{\ell\ell}$, diff. in M_{ii} , M_{ll} , $p_T^{\ell 1}$
			polarisation meas. with 2 BDTs
VV+2j	$WZ \rightarrow 3\ell$	36 fb ⁻¹	137 fb ⁻¹
		BDT (15 vars) in SR, combined fit SR+b-	BDT (13 vars), diff xs in M _{jj}
		CR+QCD-CR+ZZ-CR, diff xs in m_T (WZ), Σp_T^{ℓ} ,	-
		$\Delta \Phi(W,Z), N_{jets}, M_{jj}, \Delta \Phi_{jj}, \Delta y_{jj}$	
	$ZZ \rightarrow 4\ell$	139 fb ⁻¹	137 fb ⁻¹
		Multivariate discriminant, CR+SR combined fit	Matrix Element analysis
	$WV \rightarrow \ell \nu qq$	35 fb ⁻¹	137 fb ⁻¹
		Fit of BDT in 9 SR, M _{jj} in 12 CR	DNN
Ζγ	$\ell\ell\gamma+2j$	139 fb ⁻¹	137 fb ⁻¹
		Fit of M _{jj} CR+SR	2D fit M_{jj} - $M_{\ell\ell}$, diff. in M_{jj} , p_T^{ℓ} , p_T^{γ} , p_T^{j1}

ATLAS/CMS comparison: systematics

Channel	FS	ATLAS	CMS
ssWW	<i>ℓℓ</i> +2j	36 fb ⁻¹	137 fb ⁻¹
		Bkg non-prompt I \simeq 50%, e charge misid \simeq 15%, bkg theo model \simeq 25%	Bkg non-prompt I \simeq 3.5%, lep id \simeq 2%, bkg theo model \simeq 2%, MC stat 2.6%
VV+2j	$WZ{\rightarrow 3\ell}$	36 fb ⁻¹	137 fb ⁻¹
		Jets 6.6%, QCD model 5.2%, EWK model 4.8%	Jets 4.3%, theo model 3.8%, MC stat 3.7%, lep 2.9%
	$ZZ \rightarrow 4\ell$	139 fb ⁻¹ Exp 10%, Bkg CR 15%, EWK theo model 10%, QCD theo model 30%	137 fb ⁻¹ Jets-Bkg 5-15%, trig+lep 2-9%, MC stat 2-4%, Bkg theo model 12-20%, EWK theo model 10-
	$WV \rightarrow \ell \nu q q$	35 fb ⁻¹	137 fb ⁻¹
		jets 20%, Bkg norm. 30%, EWK model 10%, discri modeling 5-30%	jets 4%, Bkg norm. 12%, EWK model 9%, btag 5%, MC syst 10%
Zγ	ℓℓγ+2j	139 fb ⁻¹ EWK model 6%, QCD model 5%, Jets 5%	137 fb ⁻¹ theo model 5%, Jets 8%, MC stat 5%, PU 5%, $e\gamma$ 4.5%

ATLAS/CMS comparison: significance

VBS@HH21

ATLAS/CMS comparison: MC modeling and systematics

EWK samples

- * Samples with new dipole-recoil scheme have significantly smaller jet multiplicity
- * The *mjj* and Δηjj distribution are softer for Sherpa (ATLAS) sample

OCD samples:

- * mij much softer for the OCD PW+Pv8 (ATLAS) samples
- * Δη much more central for the QCD MG5+Py8 (CMS) sample

 $W^\pm W^\pm \to e^+ \pm \mu^\pm \nu_e \nu_\mu$

ATLAS+CMS Generator Level

> QCD PW+Pv8 (ATLAS) QCD Sherpá (ATLAS)

NNN QCD MG5+Pv8 LO (CMS)

Preliminary 10^{-2}

:탑 10⁻¹

10-3

1.4

1.2 499444

0.4 0.2

0

Ratio 0.6

Δn:

ATLAS/CMS comparison: HL-LHC projections

- Cross sections at LO and NLO EW for W⁺W⁻ scattering at √s=14,27,100 TeV
 - σ increase with \sqrt{s} while EW corrections become negatively larger
 - typical scale in the Sudakov logarithms is increasing

\sqrt{s}	$\sigma^{\rm LO}[{\rm fb}]$	$\sigma_{\rm EW}^{\rm NLO}[{\rm fb}]$	$\delta_{\rm EW}[\%]$	
$14 \mathrm{TeV}$	1.4282(2)	1.213(5)	-15.1	
$27\mathrm{TeV}$	4.7848(5)	3.881(7)	-18.9	
$100{\rm TeV}$	25.485(9)	19.07(6)	-25.2	arXiv:2102.10991

- Simulations of upgraded detectors at √s=14 and total luminosity 3000 fb⁻¹
 - VBS W[±]W[±] expected total uncertainty on cross section is 4.5 (5-6)% for CMS(ATLAS)
 - VBS W₁[±]W₁[±] CMS+ATLAS combination should yield 3g discovery
 - VBS W[±]Z overall expected uncertainty 5.5 (5)% for CMS(ATLAS)
 - VBS W[±]Z₁ expect evidence of 1.3-1.4σ for CMS and 1.5-2.5σ for ATLAS

Remember...

G. Altarelli, EPS-HEP 2011

LHC scenarios

Catastrophic: No Higgs, no new physics

Can only occur if the LHC is not enough to fully probe the EW scale: unitarity violations impose one or the other (eg new vector bosons) or both

Theorist projection: non standard Higgs and new physics

A lot of model building in this direction

Pure SM: A light scalar Higgs, no new physics at the EW scale If so, nature does not abhor fine tuning at all This is the paradigm that experiment must try to falsify

Ð

VBS is back on the front line... ...towards the end goal of a more complete theory

- VBS as a test of the exact nature of EWSB and of the Higgs potential
- Right now: "Bottom-Up" approach with EFT.
- Still iterating on the "correct" EFT ...
- Full theoretical model probably still a long way...

Feature Tags: vector bosons. W boson

Unraveling Nature's secrets: vector boson scattering at the LHC 22nd September 2020 I BV Uxia DI Claccio. Simone Pagan Griso

"

It would be a sensation if more precise measurements indicated that such new terms are necessary to describe the data. It would be a sign of physics beyond the Standard Model and indication of the direction to take in order to develop a more complete theory, depending on which kinds of terms are needed. The interplay between experimental observations and models in the quest for a complete theory would continue.

A few open items...

Ruiz et al. arXiv:2106.01393

Theory side

- VBS approx vs full NLO (EW+QCD) corrections: Pellen et al arXiv:1803.07943
- EFT definition
- NLO EFT ?
- For future colliders: behaviour in the massless limit, EW PDF ?

Experimental side

- More stat.
- Add final states with tau leptons, hadronic decays.
- Improve acceptance: triggering on VBF jets, quark-gluon discrimination.
- Reduce systs: MC modeling, JES.

Common to both

- Data to publish to allow for theoretical re-interpretation in several years time.
- Central jet activity (MC modeling).
- Polarisation: theoretical definitions and measurements.

BACKUPS

Comparison of ATLAS and CMS VBS MCs

- Ability to use VBS to constrain BSM models depends on reliable theoretical predictions with well understood systematic uncertainties
- * Comparison of several MCs from ATLAS, CMS and VBScan COST (particle level)

Sample name	Generator	µ-scale	Shower	Tune	PDF	further settings
Sherpa (ATLAS)	SHERPA V2.2.2 Bug in colour flow	dynamic scale, m_{WW}	internal	internal	NNPDF3.0- NNLO	multileg-LO, ex- actly six EW vertices with one additional parton at LO accuracy in QCD
PW+Py8	POWHEG v2,	fixed scale,	PYTHIA	AZNLO	NNPDF3.0-	NLO
(ATLAS) PW+Py8 dipole- recoil (ATLAS) MG5+Py8	VBS approx. POWHEG v2 MG5_AMCNLO	m_W fixed scale, m_W dynamic scale,	PYTHIA PYTHIA	AZNLO A14	NNPDF3.0- NLO NNPDF3.0-	Dipole Recoil [6]
recoil (ATLAS)	V2.0.2	$\sqrt{p_{\mathrm{T}}^{\mathrm{jet1}} p_{\mathrm{T}}^{\mathrm{jet1}}}$	8.200		NLO	con [b]
MG5+Py8 (CMS)	MG5_AMCNLO v2.3.3	dynamic scale, using a $2\rightarrow 2$ topology from the clustered external state	РҮТНІА 8.212	CUETP8M1 [7]	NNPDF3.0- LO	LO, exactly six EW vertices
PW+Py8 (VBScan)	POWHEG v2	dynamic scale, $\sqrt{p_{T}^{\text{jet1}} p_{T}^{\text{jet2}}}$	PYTHIA 8.230	Monash	NNPDF3.0- NLO	NLO

16

ATLAS/CMS MC comparison details

Selection requirement	Selection value
dressed leptons with dressing cone of $\Delta R = 0.1$ and minimum $p_{\rm T}^{\ell}$	> 20 GeV
η_ℓ	$ \eta_{\ell} \le 2.5$
Charge of leading electron and muon	$c_e \times c_\mu > 0$
minimum ΔR between any of the leptons	$\Delta R \ge 0.3$
Jets, anti- k_t with $R = 0.4$, excluding leptons and neutrinos	$p_{\rm T} > 30 { m ~GeV}, \eta < 4.5$
Minimum jet distance to lepton, otherwise jet is removed	$\Delta R \ge 0.3$
Minimum number of jets with above criteria	2
distance in pseudo-rapidity of the jets	$\Delta \eta_{jj} \ge 2.5$
$p_{\mathrm{T}}^{\mathrm{miss}}$	> 40 GeV
Signal region: invariant mass of jet system	$m_{jj} \ge 500 \text{ GeV}$
Control region: invariant mass of jet system	$200 \ { m GeV} < m_{jj} < 500 \ { m GeV}$

Sample name	Fiducial cross section [fb]	Fiducial cross section [fb]
	$W^+W^+ \to e^+\mu^+\nu_e\nu_\mu$	$W^{\pm}W^{\pm} \rightarrow e^{\pm}\mu^{\pm}\nu_e\nu_{\mu}$
Sherpa (ATLAS)	0.968 ± 0.005	1.136 ± 0.005
PW+Py8 (ATLAS)	1.320 ± 0.009	1.768 ± 0.009
PW+Py8 dipole-recoil (ATLAS)	1.322 ± 0.009	1.769 ± 0.009
MG5+Py8 dipole-recoil (ATLAS)	1.313 ± 0.028	1.734 ± 0.028
MG5+Py8 (CMS)	1.281 ± 0.018	1.707 ± 0.021
PW+Py8 (VBScan)	1.364 ± 0.0004	n/a

