ATLAS Higgs Combination

Chen Zhou (University of Wisconsin) on behalf of the ATLAS Collaboration

September 20-22, 2021 - Orsay-Paris Higgs Hunting Workshop

Introduction

- Since the Higgs discovery by ATLAS and CMS in 2012, many **Higgs property studies** (mass, spin, parity, couplings, cross sections, etc.) have been performed
 - Today: combined measurements of Higgs boson using **13 TeV data** collected with the ATLAS detector (<u>ATLAS-CONF-2020-027</u>, <u>ATLAS-CONF-2020-053</u>, <u>ATLAS-CONF-2019-032</u>)

Signal strength & production cross-section measurements

	ggF	VBF	VH	ttH+tH
Н→үү	✓ (139 fb ⁻¹)	✓ (139 fb ⁻¹)	✔ (139 fb ⁻¹)	✓ (139 fb ⁻¹)
H→ZZ	 ✓ (139 fb⁻¹) 	✓ (139 fb ⁻¹)	✔ (139 fb ⁻¹)	
H→WW	✓ (36 fb ⁻¹)	✓ (36 fb ⁻¹)		✓ (36-139 fb ⁻¹)
Н→тт	✓ (36 fb ⁻¹)	✔ (36 fb ⁻¹)		
H→bb		✓ (25-31 fb⁻¹)	✓ (139 fb⁻¹)	✓ (36 fb⁻¹)

✓: channel included in the combination

Inclusive signal strength

4

- Inclusive signal strength, defined as the measured Higgs boson signal yield normalized to its SM prediction, is determined to be
- $\mu = 1.06 \pm 0.07 = 1.06 \pm 0.04(\text{stat.}) \pm 0.03(\text{exp.})^{+0.05}_{-0.04}(\text{sig. th.}) \pm 0.02(\text{bkg. th.})$
 - This measurement is systematically limited

- ggF cross section is now measured with 7% precision
 - Precision of N3LO cross section prediction: 5%
- All major production modes (ggF, VBF, WH, ZH, ttH) are observed!
 - WH: 6.3σ, ZH: 5.0σ

Simplified template cross section (STXS) measurements

	ggF	VBF	VH	ttH+tH
Н→үү	✓ (139 fb ⁻¹)	✓ (139 fb ⁻¹)	✔ (139 fb ⁻¹)	✓ (139 fb ⁻¹)
H→ZZ	✔ (139 fb ⁻¹)	✓ (139 fb ⁻¹)	✓ (139 fb ⁻¹)	✓ (139 fb ⁻¹)
H→bb			✓ (139 fb ⁻¹)	

 \checkmark : channel included in the combination

Simplified template cross sections

- Measure production mode cross-sections in various phase-space regions, which are chosen according to
 - sensitivity to BSM effects
 - avoidance of large theory uncertainties
 - matching to experimental selections
- Within each region, use the SM predicted signal templates to fit data
 - Can still exploit powerful analysis techniques (e.g. MVA)
- STXS are measured granularly in this combination
 - without assuming the SM decays of Higgs boson

STXS results

Chen Zhou (Wisconsin)

Higgs Hunting 2021/9/21

STXS results

- 29 regions are probed, good compatibility with the SM prediction
- All regions are statistically limited; in some regions (e.g. ggF 0-jet) systematics are not negligible

 The upper limit on the tH cross section is 8.4 times the SM prediction

Chen Zhou (Wisconsin)

Coupling modifier ("kappa") interpretation

	ggF	VBF	VH	ttH+tH
Н→үү	✓ (139 fb ⁻¹)			
H→ZZ	✓ (139 fb ⁻¹)	✓ (139 fb ⁻¹)	✓ (139 fb ⁻¹)	
H→WW	✓ (36 fb ⁻¹)	✓ (36 fb ⁻¹)		✓ (36-139 fb ⁻¹)
Н→тт	✓ (36 fb⁻¹)	✓ (36 fb ⁻¹)		
H→bb		✓ (25-31 fb⁻¹)	✓ (139 fb ⁻¹)	✓ (36 fb⁻¹)

✓: channel included in the combination

Analyses of H→µµ (139 fb⁻¹) and H→invisible (139 fb⁻¹) are also included in relevant studies

Chen Zhou (Wisconsin)

Higgs Hunting 2021/9/21

Coupling modifier ("kappa")

- Leading order motivated framework: assign coupling modifier to each (effective) interaction vertex (e.g. κ_w, κ_t...)
- In this framework, production cross section times decay branch fraction of i→H→f can be parameterized as

$$\sigma_i \times B_f = \frac{\sigma_i(\boldsymbol{\kappa}) \times \Gamma_f(\boldsymbol{\kappa})}{\Gamma_H},$$

- (this allows for a consistent treatment of production and decay)
- Total width of Higgs boson can be expressed as

$$\Gamma_H(\boldsymbol{\kappa}, B_{\mathrm{i.}}, B_{\mathrm{u.}}) = \kappa_H^2(\boldsymbol{\kappa}, B_{\mathrm{i.}}, B_{\mathrm{u.}}) \Gamma_H^{\mathrm{SM}}$$

 $B_{i.}$ = BSM contribution to BR of invisible decays which are identified through a missing transverse momentum signature $B_{u.}$ = BSM contribution to BR of undetected decays to which none of the analyses in the combination are sensitive

Coupling modifier vs. particle mass

- Assume no BSM contribution in loopinduced processes (ggF, H→γγ etc.) or total width. Resolve ggF and Hγγ effective vertices
- Good agreement with the SM across 3 orders of magnitude of particle mass!

Coupling modifier: different scenarios

- Not resolving ggF and Hγγ effective vertices (and introducing corresponding coupling modifiers κ_g, κ_γ), explore two different scenarios for total width:
 - Left: assume B_{i.}=B_{u.}=0
 - **Right**: constrain B_{i} and B_{u} using H→invisible analysis and $\kappa_V < 1$
- All coupling modifiers are measured to be compatible with the SM

Interpretation of STXS measurements with Effective Field Theory (EFT)

	ggF	VBF	VH	ttH+tH
Н→үү	✔ (139 fb ⁻¹)	✓ (139 fb ⁻¹)	✔ (139 fb ⁻¹)	✓ (139 fb ⁻¹)
H→ZZ	✔ (139 fb ⁻¹)	✓ (139 fb ⁻¹)	✓ (139 fb ⁻¹)	✓ (139 fb ⁻¹)
H→bb			✓ (139 fb ⁻¹)	

 \checkmark : channel included in the combination

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + \dots$$

- Parameterize the signal strengths, (XS*BR)_{meas}/(XS*BR)_{SM}, directly with Wilson coefficients of d=6 SMEFT operators
- Rotate the SMEFT basis cj to eigenvector cj' and fit 10 sensitive eigenvectors simultaneously
 - these eigenvectors are obtained from identifying groups of operators with similar impact and performing eigenvector decomposition for the covariance matrix of the measurement

- All measured parameters are consistent with the SM expectation within their uncertainties
- Comparison of the linear model and the linear+quadratic model shows sizeable sensitivity to operators suppressed by Λ^4

From a simultaneous fit

Combined measurements of the total and differential cross sections of Higgs boson production

Including the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4$ -lepton decay channels Using the full Run-2 dataset recorded by ATLAS, corresponding to 139 fb⁻¹

Total and differential cross sections

 The results from the two decay channels are found to be compatible with each other, and their combination agrees with the Standard Model prediction

Chen Zhou (Wisconsin)

Summary

- Based on up to 139 fb⁻¹ of Run 2 data, ATLAS performed combined measurements of Higgs boson production and decays:
 - inclusive signal strength
 - production cross sections
 - simplified template cross sections
- Based on 139 fb⁻¹ of full Run 2 data, ATLAS performed combined measurements of total and differential Higgs boson cross sections
- All major production modes (ggF, VBF, WH, ZH, ttH) are observed
- All measurements are in agreement with the SM within the improved uncertainties
- Results can be interpreted using "kappa", EFT and BSM models

Backup slides

Production mode cross sections (assuming the SM decays)

Production mode cross sections in each decay channel

ATLAS Preliminary		
$\sqrt{s} = 13 \text{ TeV}, 24.5 - 139 \text{ fb}^{-1}$	Stat.	
$m_{H} = 125.09 \text{ GeV}, y_{H} < 2.5$		
p _{SM} = 87%	Total	Stat. Syst.
ggF γγ 🙀	1.03 ± 0.11 (± 0.08 , $^{+ 0.08}_{- 0.07}$)
ggF ZZ	0.94 +0.11 (± 0.10 , ± 0.04)
ggF WW 📥	1.08 +0.19 (± 0.11 , ± 0.15)
ggF ττ μ ΞΞΞ− μ	1.02 +0.60 -0.55 ($^{+0.39}_{-0.38}$, $^{+0.47}_{-0.39}$)
ggF comb.	1.00 ± 0.07 (± 0.05 , ± 0.05)
VBF γγ μ	1.31 +0.26 ($^{+0.19}_{-0.18}$, $^{+0.18}_{-0.15}$)
	1.25 +0.50 -0.41	$^{+0.48}_{-0.40}$, $^{+0.12}_{-0.08}$)
	0.60 +0.36 ($^{+0.29}_{-0.27}$, ± 0.21)
VBF ττ μ	1.15 +0.57 -0.53 ($^{+0.42}_{-0.40}$, $^{+0.40}_{-0.35}$)
VBF bb	3.03 ^{+ 1.67} _{- 1.62} ($^{+1.63}_{-1.60}$, $^{+0.38}_{-0.24}$)
VBF comb.	1.15 ^{+0.18} _{-0.17} (± 0.13 , $^{+0.12}_{-0.10}$)
νΗ γγ 🛌	1.32 +0.33 ($^{+0.31}_{-0.29}$, $^{+0.11}_{-0.09}$)
VH ZZ	1.53 ^{+ 1.13} _{- 0.92} ($^{+1.10}_{-0.90}$, $^{+0.28}_{-0.21}$)
VH bb 🙀	1.02 +0.18 -0.17 (± 0.11 , $^{+0.14}_{-0.12}$)
VH comb.	1.10 ^{+0.16} _{-0.15} (± 0.11 , $^{+0.12}_{-0.10}$)
ttH+tH γγ 📫	0.90 +0.27 ($^{+0.25}_{-0.23}$, $^{+0.09}_{-0.06}$)
ttH+tH VV	1.72 +0.56 ($^{+0.42}_{-0.40}$, $^{+0.38}_{-0.34}$)
ttH+tH ττ ι	1.20 ^{+1.07} _{-0.93} ($^{+0.81}_{-0.74}$, $^{+0.70}_{-0.57}$)
ttH+tH bb	0.79 +0.60 (± 0.29 , $^{+ 0.52}_{- 0.51}$)
ttH+tH comb.	1.10 +0.21 ($^{+0.16}_{-0.15}$, $^{+0.14}_{-0.13}$)
-2 0 2 4	6	8
$\sigma \times B n$	ormaliz	ed to SM

Production mode cross sections in each decay channel

Production mode cross sections and decay branch ratios

STXS results

Parametrizations using coupling modifier ("kappa")

Production	Loops	Main	Effective	Resolved modifier	
Troduction	цоорь	interference	modifier	nesorved modifier	
$\sigma(m ggF)$	\checkmark	$t{-}b$	κ_g^2	$1.040\kappa_t^2 + 0.002\kappa_b^2 - 0.038\kappa_t\kappa_b - 0.005\kappa_t\kappa_c$	
$\sigma(\text{VBF})$	-	-	-	$0.733 \kappa_W^2 + 0.267 \kappa_Z^2$	
$\sigma(qq/qg \to ZH)$	-	-	-	κ_Z^2	
$\sigma(aa \to ZH)$	\checkmark	t–Z	$\mathcal{K}(aaZH)$	$2.456\kappa_Z^2 + 0.456\kappa_t^2 - 1.903\kappa_Z\kappa_t$	
			(ggZII)	$-0.011 \kappa_Z \kappa_b + 0.003 \kappa_t \kappa_b$	
$\sigma(WH)$	-	-	-	κ_W^2	
$\sigma(t\bar{t}H)$	-	-	-	κ_t^2	
$\sigma(tHW)$	-	t–W	-	$2.909 \kappa_t^2 + 2.310 \kappa_W^2 - 4.220 \kappa_t \kappa_W$	
$\sigma(tHq)$	-	$t{-}W$	-	$2.633 \kappa_t^2 + 3.578 \kappa_W^2 - 5.211 \kappa_t \kappa_W$	
$\sigma(b\bar{b}H)$	-	-	-	κ_b^2	
Partial decay wid	th				
Γ^{bb}	-	-	-	κ_b^2	
Γ^{WW}	-	-	-	κ_W^2	
Γ^{gg}	\checkmark	$t{-}b$	κ_q^2	$1.111 \kappa_t^2 + 0.012 \kappa_b^2 - 0.123 \kappa_t \kappa_b$	
$\Gamma^{ au au}$	-	-	-	$\kappa_{ au}^2$	
Γ^{ZZ}	-	-	-	κ_Z^2	
Γ^{cc}	-	-	-	$\kappa_c^2 \ (= \kappa_t^2)$	
				$1.589 \kappa_W^2 + 0.072 \kappa_t^2 - 0.674 \kappa_W \kappa_t$	
$\Gamma^{\gamma\gamma}$	\checkmark	$t{-}W$	κ_{γ}^2	$+0.009 \kappa_W \kappa_\tau + 0.008 \kappa_W \kappa_b$	
			,	$-0.002 \kappa_t \kappa_b - 0.002 \kappa_t \kappa_\tau$	
$\Gamma^{Z\gamma}$	\checkmark	t–W	$\kappa^2_{(Z\gamma)}$	$1.118 \kappa_W^2 - 0.125 \kappa_W \kappa_t + 0.004 \kappa_t^2 + 0.003 \kappa_W \kappa_b$	
Γ^{ss}	-	-	-	$\kappa_s^2 \ (= \kappa_b^2)$	
$\Gamma^{\mu\mu}$	-	-	-	κ_{μ}^{2}	
Total width (B_{i})	$= B_{u.} = 0$	0)			
				$0.581 \kappa_b^2 + 0.215 \kappa_W^2 + 0.082 \kappa_a^2$	
				$+0.063 \kappa_{\tau}^2 + 0.026 \kappa_Z^2 + 0.029 \kappa_c^2$	
Γ_H	\checkmark	-	κ_{H}^{2}	$+0.0023 \kappa_{\gamma}^2 + 0.0015 \kappa_{(Z_{\gamma})}^2$	
			11	$+0.0004 \kappa_s^2 + 0.00022 \kappa_\mu^2$	
				~ P*	

Chen Zhou (Wisconsin)

Coupling modifier interpretation: no assumption on total width

Wilson coefficients

Wilson coefficient	Operator	Wilson coefficient	Operator
$c_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	c_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$
c_{HDD}	$\left(H^{\dagger}D^{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$	c_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{H} W^I_{\mu\nu}$
c_{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	$C_{21}B$	$(\bar{q}_n \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$
c_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$		$(\bar{l}_{\mu}\gamma_{\mu}l_{\mu})(\bar{l}_{\mu}\gamma_{\mu}l_{\mu})$
c_{HW}	$H^{\dagger}H W^{I}_{\mu u}W^{I\mu u}$	C_{ll}	$(v_{p} / \mu v_{t})(v_{r} / v_{s})$ $(\bar{a} \sim a)(\bar{a} \sim \mu a)$
c_{HWB}	$H^{\dagger} \tau^{I} H W^{I}_{\mu u} B^{\mu u}$	C_{qq}	$(q_p)_{\mu}q_t)(q_r)_{\mu}q_s)$
c_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	$C^{(3)}_{m{q}m{q}}$	$(q_p \gamma_\mu \tau^{\prime} q_r)(q_s \gamma^\mu \tau^{\prime} q_t)$
C_{α} μ	$(H^{\dagger}H)(\bar{a}_{n}u_{n}\widetilde{H})$	c_{qq}	$(\bar{q}_p \gamma_\mu q_t)(\bar{q}_r \gamma^\mu q_s)$
Cum	$(\Pi^{\dagger}\Pi)(\bar{q}pa_{T}\Pi)$ $(H^{\dagger}H)(\bar{a} \ d \ \widetilde{H})$	$c_{qq}^{\scriptscriptstyle{(31)}}$	$(\bar{q}_p \gamma_\mu \tau^I q_t) (\bar{q}_r \gamma^\mu \tau^I q_s)$
C_{dH}	$(\Pi^{\dagger}\Pi)(q_{p}a_{r}\Pi)$	c_{uu}	$(\bar{u}_p \gamma_\mu u_r) (\bar{u}_s \gamma^\mu u_t)$
$c_{Hl}^{\scriptscriptstyle (i)}$	$(H^{\dagger}i D_{\mu}H)(l_p\gamma^{\mu}l_r)$	$C^{(1)}_{\mu\mu}$	$(\bar{u}_p \gamma_\mu u_t)(\bar{u}_r \gamma^\mu u_s)$
$c_{Hl}^{\scriptscriptstyle (3)}$	$(H^{\dagger}iD_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	$c^{(1)}_{au}$	$(\bar{q}_n\gamma_\mu q_t)(\bar{u}_r\gamma^\mu u_s)$
c_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$c_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$c_{Hq}^{\scriptscriptstyle (1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	$c^{\scriptscriptstyle (8)}_{oldsymbol{qu}}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
$c_{Hq}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i\overleftrightarrow{D}{}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	$c_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
c_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	c_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$
c_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	c_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$

Constraints on Two Higgs Doublet Model (2HDM)

Constraints on Minimal Supersymmetric Standard Model (MSSM)

