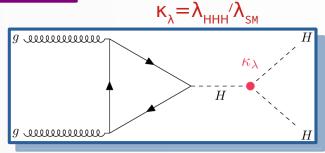
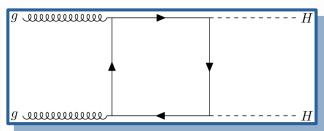


Search for Higgs Boson pair production in the final state with two bottom quarks and two photons in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Higgs Hunting September 22nd, 2021

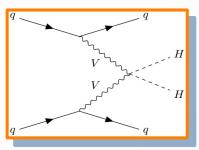
Raphaël Hulsken
On behalf of the ATLAS collaboration

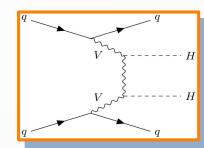

Run: 329964

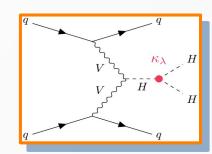

Event: 796155578

2017-07-17 23:58:15 CEST

Physics motivations

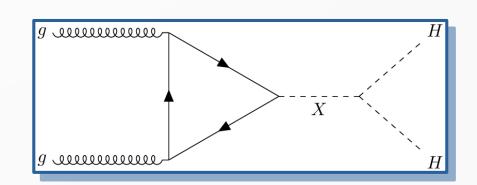

Non-resonant

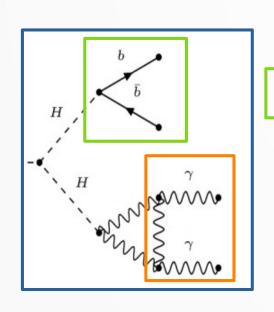




$$V(H) = \lambda V^2 H^2 + \lambda V H^3 + \lambda H^4$$

- Tiny SM σ_{HH}^{ggF} due to destructive interference
- Deviation can be a manifestation of new physics
- Here $\sigma_{HH} = \sigma_{HH} ggF + \sigma_{HH} VBF$

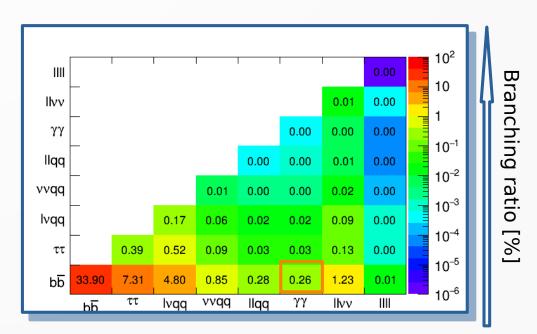




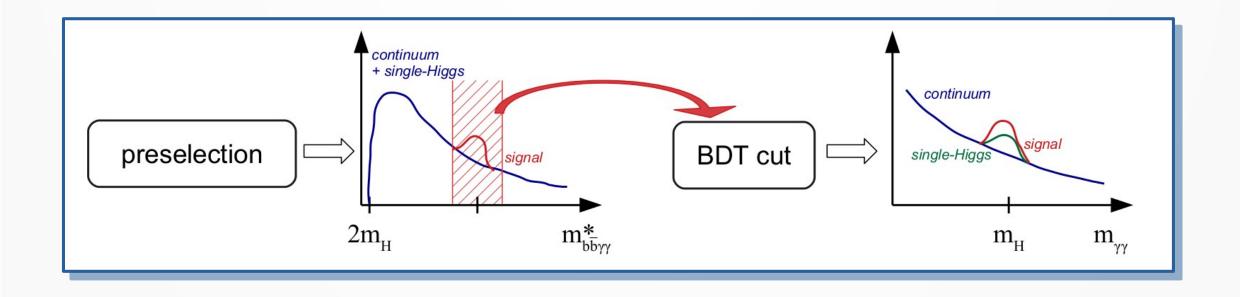
resonant

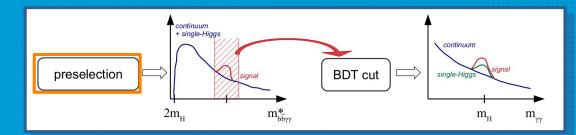
- Search for a spin 0 resonance in the 251 GeV ≤ X ≤ 1 TeV range
- Narrow width models such as :
 - two Higgs doublets
 - MSSM
 - twin Higgs model
 - composite Higgs model contain such spin 0 resonances

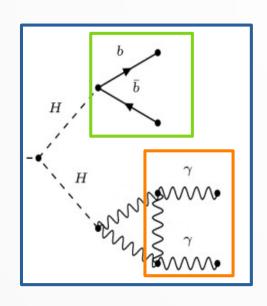
Channel choice


High H->bb branching ratio

Fully reconstructable final state


 Main backgrounds are di-photon continuum and single Higgs boson (Non-resonant ggF and VBF for resonant analysis)


- Good photon identification & reconstruction :
 - good trigger (advantage for low m_{HH})
 - High S/B

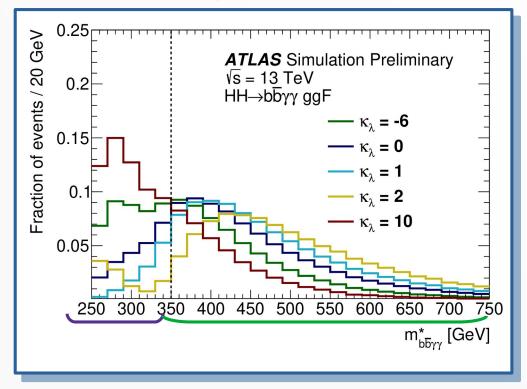

Analysis strategy

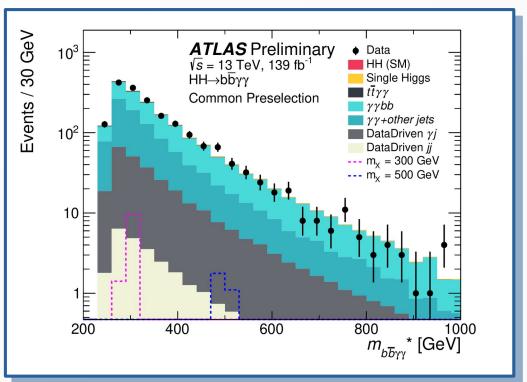
Pre-selection

Common pre-selection for resonant and non-resonant analysis

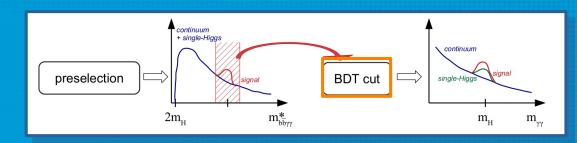
- Di-photon trigger
- $E_T/m_{yy} > 0.35$ (0.25) for leading (subleading) photon
- Isolation criteria in a cone of R = 0.2
 - $-E_{T}^{iso} < 0.065*E_{T}$
 - $p_T^{iso} < 0.05 * E_T$
- 105 GeV ≤ m_{yy} ≤160 GeV
- Less than 6 central jets ($|\eta| < 2.5$) with $P_T > 25$ GeV
- 2 b-jets with 77 % b-tagging efficiency

$\begin{array}{c} \text{continuum} \\ \text{+ single-Higgs} \\ \text{2m}_{\text{H}} \\ \end{array} \begin{array}{c} \text{BDT cut} \\ \text{m}_{\text{bb}\gamma\gamma} \\ \end{array} \begin{array}{c} \text{continuum} \\ \text{single-Higgs} \\ \text{m}_{\text{H}} \\ \text{m}_{\gamma\gamma} \\ \end{array}$

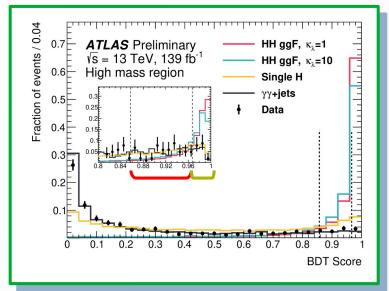

m_{HH} categorization

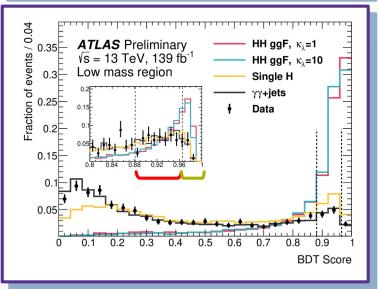

- m*_{bbyy} used in both analysis to improve resolution
- 2 category in Non-resonant analysis :

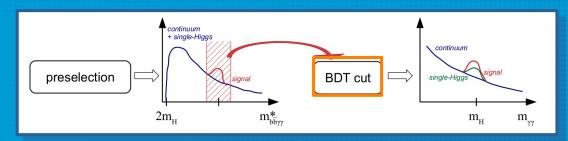
-low: < 350 GeV for BSM -High: >350 GeV for SM


$$m_{\bar{b}b\gamma\gamma}^* = m_{\bar{b}b\gamma\gamma} - m_{\bar{b}b} - m_{\gamma\gamma} + 250$$

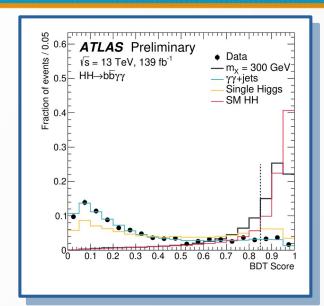
• Resonant analysis : selection applied on $m^*_{bb\gamma\gamma}$ at +/-2 σ (+/- 4 σ) around the expected mean signal value for each resonance (at 900-1000 GeV)

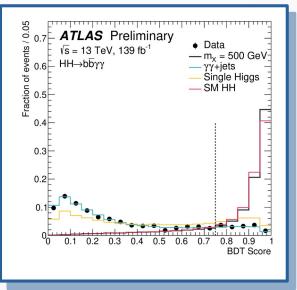


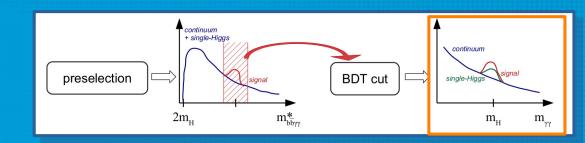

Non-resonant BDT selection


- Low and High mass region are both separated in 2 sub-category
- BDT trained for each region to discriminate signal from continuum and single Higgs
- Loose and Tight BDT selection
 - Selection taken to **maximize** the **combined** expected significance

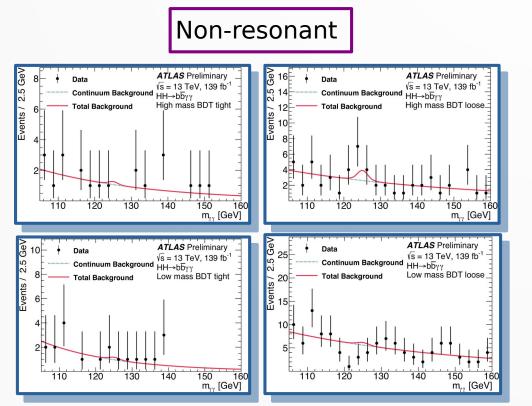
Category	Selection criteria
High mass BDT tight	$m_{b\bar{b}\gamma\gamma}^* \ge 350 \text{ GeV}, \text{BDT score} \in [0.967, 1]$
High mass BDT loose	$m_{b\bar{b}\gamma\gamma}^* \ge 350 \text{ GeV}, \text{BDT score} \in [0.857, 0.967]$
Low mass BDT tight	$m_{b\bar{b}\gamma\gamma}^* < 350 \text{ GeV}, \text{BDT score} \in [0.966, 1]$
Low mass BDT loose	$m_{b\bar{b}\gamma\gamma}^* < 350 \text{ GeV, BDT score} \in [0.881, 0.966]$

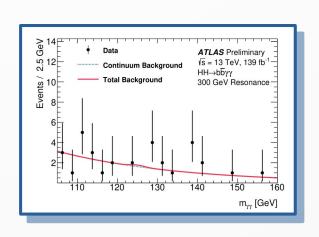


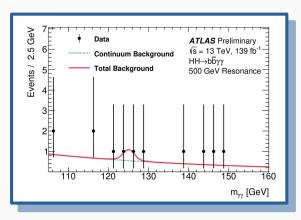

Resonant BDT selection


- One BDT for all resonances but selection depends on the mass
- Two BDT to separate signal for continuum (BDT_{yy}) and from single Higgs background (BDT_{SingleH})
- Combination of both score into one score BDT_{tot}

$$BDT_{tot} = \frac{1}{\sqrt{C_1^2 + (1 - C_1)^2}} \sqrt{C_1^2 (\frac{BDT_{\gamma\gamma} + 1}{2})^2 + (1 - C_1)^2 (\frac{BDT_{SingleH} + 1}{2})^2}$$

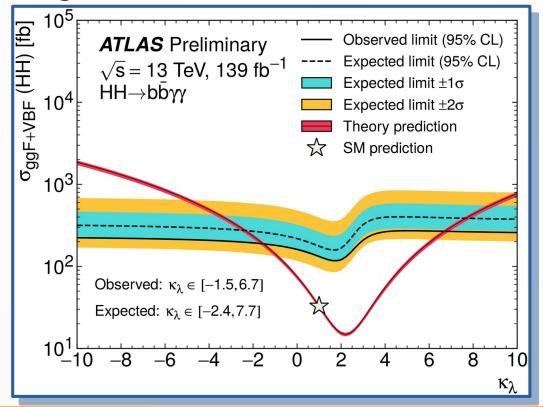



Signal and background modelisation



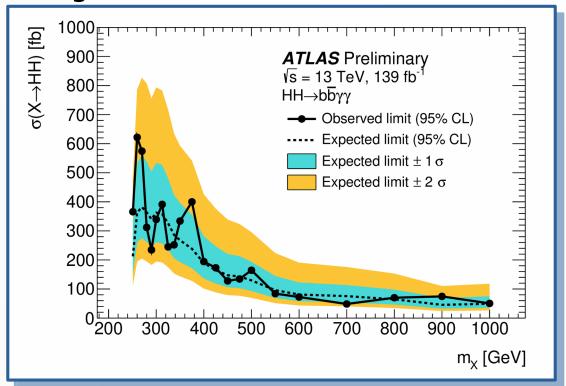
- Fit m_{vv} on for both non-resonant & resonant
- Signal and single Higgs background is modeled from fit on MC using Double Sided Crystal Ball function
- Continuum background is modeled from data side-band fit using Exponential function

Resonant



Higgs boson pair production, HULSKEN Raphaël

Non-resonant results


No signal, limits are set via the CLs method

- Observed (Expected) non-resonant HH production of 180 (130) fb: 4.1 (5.5) times the SM
 - Previous paper, 36 fb⁻¹ results : 22 (28) times the SM, -8.2 (-8.3) $< \kappa_{\lambda} < 13.2$ (13.2)
 - Full Run 2 CMS <u>results</u>: 7.7 (5.2) times the SM, -3.3 (-2.5) $< \kappa_{\lambda} < 8.5$ (8.2)

Resonant results

No signal, limits are set via the CLs method

- Observed (Expected) σ upper limits at 95% CL for a scalar resonance vary between **610-47 (360-43) fb** in the 251 GeV \leq m_x \leq 1000 GeV mass range.
- Previous paper, 36 fb⁻¹ results: observed (expected) limits between 1140-120 (900-150) fb in the 260 GeV \leq m_x \leq 1000 GeV mass range.

Conclusion

- Non-resonant and resonant searches for HH production in the HH-> bb_{yy} final state are presented
- Both channel are limited by statistics

Non-resonant

4.1 (5.5) times the SM -1.5 (-2.4) < κ_λ < 6.7 (7.7)

Compared to previous paper : $\sim 60\%$ improvement from m_{HH} categorization

~20% from BDT strategy

~10% from b-jet corrections

Resonant

610-47 (360-43) fb in the 251 GeV ≤ m_x ≤ 1000 GeV mass range

~30% improvement from BDT strategy compared to the baseline strategy

Best channel for low regime

Presented as a **conf note** for 2021 winter conference

Thanks for your attention!

Variable in BDT non-resonant analysis

Variable	Definition			
Photon-related kin	ematic variables			
$p_{\mathrm{T}}/m_{\gamma\gamma}$	Transverse momentum of the two photons scaled by their invariant mass $m_{\gamma\gamma}$			
η and ϕ	Pseudo-rapidity and azimuthal angle of the leading and sub-leading photon			
Jet-related kinematic variables				
b-tag status	Highest fixed b-tag working point that the jet passes			
p_{T},η and ϕ	Transverse momentum, pseudo-rapidity and azimuthal angle of the two jets with the highest <i>b</i> -tagging score			
$p_{\mathrm{T}}^{bar{b}},\eta_{bar{b}}$ and $\phi_{bar{b}}$	Transverse momentum, pseudo-rapidity and azimuthal angle of <i>b</i> -tagged jets system			
$m_{bar{b}}$	Invariant mass built with the two jets with the highest <i>b</i> -tagging score			
$H_{ m T}$	Scalar sum of the p_T of the jets in the event			
Single topness	For the definition, see Eq. (??)			
Missing transverse	momentum-related variables			
$E_{\mathrm{T}}^{\mathrm{miss}}$ and ϕ^{miss}	Missing transverse momentum and its azimuthal angle			

Variable in BDT resonant analysis

	D C to			
Variable	Definition			
Photon-related kinematic variables				
$p_{\mathrm{T}}^{\gamma\gamma}, y^{\gamma\gamma}$	Transverse momentum and rapidity of the di-photon system			
$\Delta\phi_{\gamma\gamma}$ and $\Delta R_{\gamma\gamma}$	Azimuthal angular distance and ΔR between the two photons			
Jet-related kinematic variables				
$m_{bar{b}}, p_{\mathrm{T}}^{bar{b}}$ and $y_{bar{b}}$	Invariant mass, transverse momentum and rapidity of the <i>b</i> -tagged jets system			
$\Delta\phi_{bar{b}}$ and $\Delta R_{bar{b}}$	Azimuthal angular distance and ΔR between the two b -tagged jets			
$N_{ m jets}$ and $N_{b- m jets}$	Number of jets and number of b-tagged jets			
$H_{ m T}$	Scalar sum of the p_T of the jets in the event			
Photons and jets-related kinematic variables				
$m_{bar{b}\gamma\gamma}$	Invariant mass built with the di-photon and <i>b</i> -tagged jets system			
$\Delta y_{\gamma\gamma,bar{b}}, \Delta\phi_{\gamma\gamma,bar{b}}$ and $\Delta R_{\gamma\gamma,bar{b}}$	Distance in rapidity, azimuthal angle and ΔR between the di-photon and the b -tagged jets system			

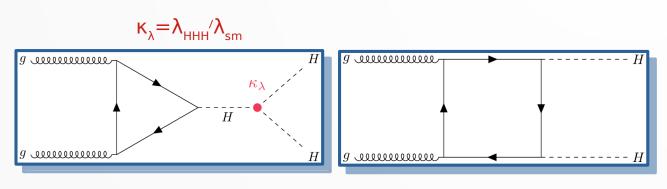
Yields

Non-resonant analysis

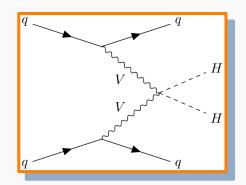
	High mass	High mass	Low mass	Low mass
	BDT tight	BDT loose	BDT tight	BDT loose
Continuum background Single Higgs boson background ggF ttH ZH Rest	4.9 ± 1.1 0.670 ± 0.032 0.261 ± 0.028 0.1929 ± 0.0045 0.142 ± 0.005 0.074 ± 0.012	9.5 ± 1.5 1.57 ± 0.04 0.44 ± 0.04 0.491 ± 0.007 0.486 ± 0.010 0.155 ± 0.020	3.7 ± 1.0 0.220 ± 0.016 0.063 ± 0.014 0.1074 ± 0.0033 0.04019 ± 0.0027 0.008 ± 0.006	24.9 ± 2.5 1.39 ± 0.04 0.274 ± 0.030 0.742 ± 0.009 0.269 ± 0.007 0.109 ± 0.016
SM HH signal	0.8753 ± 0.0032	0.3680 ± 0.0020	$(49.4 \pm 0.7) \cdot 10^{-3}$ $(46.1 \pm 0.7) \cdot 10^{-3}$ $(3.22 \pm 0.08) \cdot 10^{-3}$	$(78.7 \pm 0.9) \cdot 10^{-3}$
ggF	0.8626 ± 0.0032	0.3518 ± 0.0020		$(71.8 \pm 0.9) \cdot 10^{-3}$
VBF	0.01266 ± 0.00016	0.01618 ± 0.00018		$(6.923 \pm 0.011) \cdot 10^{-3}$
Alternative $HH(\kappa_{\lambda} = 10)$ signal Data	6.36 ± 0.05	3.691 ± 0.038 17	4.65 ± 0.04 5	8.64 ± 0.06

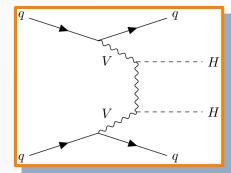
Resonant analysis

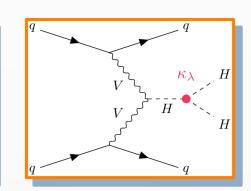
	$m_X = 300 \text{ GeV}$	$m_X = 500 \text{ GeV}$
Continuum background Single Higgs boson background SM HH background	5.6 ± 2.4 0.339 ± 0.009 $(20.6 \pm 0.5) \cdot 10^{-3}$	3.5 ± 2.0 0.398 ± 0.010 0.1932 ± 0.0015
$X \to HH$ signal	5.771 ± 0.031	5.950 ± 0.026
Data	6	4


Data and simulation samples

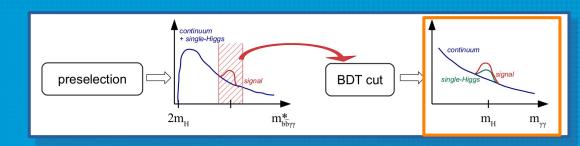
- Full run 2 data (139 fb⁻¹)
- ggF HH signal at NLO ($\kappa_{\lambda} = 1,10$) with Powheg-box v2 + Pythia 8
- VBF HH signal at LO ($\kappa_{\lambda} = 0.1, 2.10$) with MadGraph5_aMC@NLO + pythia 8
- Spin 0 resonance at LO MadGraph5 aMC@NLO + Herwig
- Single Higgs and continuum background summarized in the table
- PU overlay : Pythia 8.1

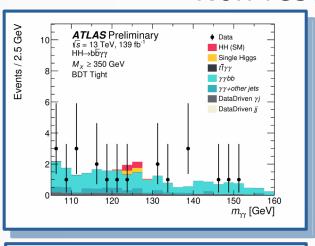

	Process	Generator	PDF set	Showering	Tune
	ggF	NNLOPS	PDFLHC	Рутніа 8.2	AZNLO
	VBF	Powheg Box v2	PDFLHC	Р утніа 8.2	AZNLO
	WH	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
	$qq \rightarrow ZH$	Powheg Box v2	PDFLHC	Р утніа 8.2	AZNLO
	$gg \rightarrow ZH$	Powheg Box v2	PDFLHC	Р утніа 8.2	AZNLO
	$tar{t}H$	Powheg Box v2	NNPDF3.0nlo	Р утніа 8.2	A14
	bbH	Powheg Box v2	NNPDF3.0nlo	Р утніа 8.2	A14
	tHqj	MadGraph5_aMC@NLO	NNPDF3.0nlo	Р утніа 8.2	A14
U	tHW	MadGraph5_aMC@NLO	NNPDF3.0nlo	Р утніа 8.2	A14
	$\gamma\gamma$ +jets	Sherpa v2.2.4	NNPDF3.0nnlo	Sherpa v2.2.4	_
	$t\bar{t}\gamma\gamma$	MadGraph5_aMC@NLO	NNPDF2.31o	Рутніа 8.2	_


Physics motivations (non-resonant)


Study of the Higgs potential

- Tiny SM $\sigma_{\text{HH}}^{\text{ggF}}$ (31.02 fb at 13 TeV for $m_{\text{H}} = 125.09$) due to destructive interference
- Deviation can be a manifestation of new physics
- σ_{HH}^{VBF} (1.7 fb at 13 TeV for $m_H = 125.09$)

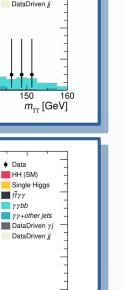



 $V(\phi^{\dagger}\phi) = \mu^2\phi^{\dagger}\phi + \lambda(\phi^{\dagger}\phi)^2$ $\supset \lambda v^2 H^2 + \lambda v H^3 + \frac{\lambda}{4} H^4$ $M_{\rm H} = \sim 125.09 \; {\rm GeV}$ $v \sim 246 \; {\rm GeV}$ $-> \; {\rm we} \; {\rm know} \; {\rm \lambda} \; ({\rm theo})$ $Access \; {\rm through} \; HH \; {\rm pairs}$ Not accessible yet

• Here $\sigma_{HH} = \sigma_{HH}^{ggF} + \sigma_{HH}^{VBF}$

Data/MC comparison

Non-resonant



ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

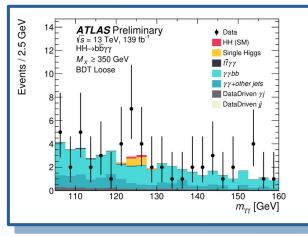
 $M_{Y} \leq 350 \text{ GeV}$

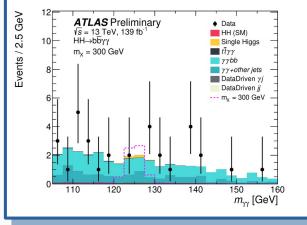
BDT Tight

Data

 $t\bar{t}\gamma\gamma$

γγbb

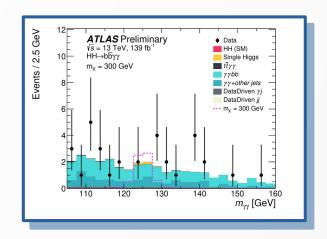

HH (SM)

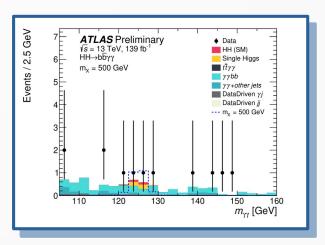

Single Higgs

DataDriven jj

150

 $m_{\gamma\gamma}$ [GeV]

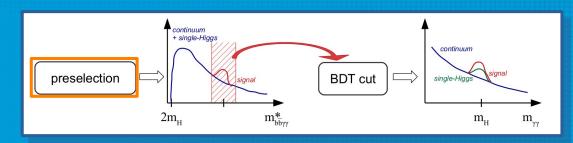


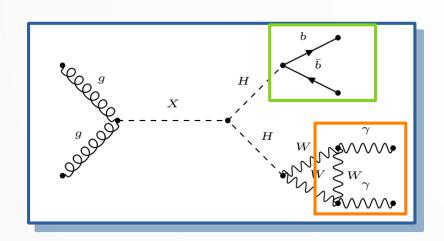


Events dominated by continuum yybb background

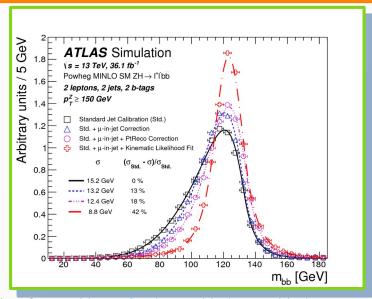
Data-driven method using 2x2D method based on reverting the isolation and identification photon criteria (only used for data/MC comparison)

Resonant


Events / 2.5 GeV


Systematic uncertainties

- Both analysis dominated by statistical uncertainty, systematic uncertainty have relatively low effects
- Only spurious signal uncertainty affects continuum background as fitted from data
- Other uncertainties affects the resonant and non-resonant signal as well as the single Higgs background

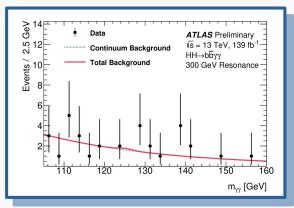

		Relative impact of the systematic uncertainties in %		
Source	Type	Non-resonant analysis <i>HH</i>	Resonant analysis $m_X = 300 \text{ GeV}$	
Experimental				
Photon energy scale	Norm. + Shape	5.2	2.7	
Photon energy resolution	Norm. + Shape	1.8	1.6	
Flavor tagging	Normalization	0.5	< 0.5	
Theoretical				
Heavy flavor content	Normalization	1.5	< 0.5	
Higgs boson mass	Norm. + Shape	1.8	< 0.5	
PDF+ $\alpha_{\rm s}$	Normalization	0.7	< 0.5	
Spurious signal	Normalization	5.5	5.4	

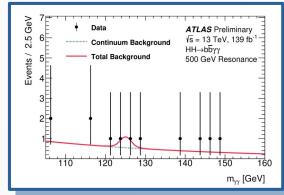
Object and preselection

- Tight photon identification
- Isolation criteria in a cone of R = 0.2
 - $-E_{T}^{iso} < 0.065*E_{T}$
 - $p_{T}^{iso} < 0.05 * E_{T}$
- 105 GeV \leq m_{yy} \leq 160 GeV
- $E_T/m_{yy} > 0.35$ (0.25) for leading (subleading) photon
- Less than 6 central jets
- Pflow jets, anti-kt R=0.4
- Tight JVT applied
- 2 b-jets with DL1r 77 % WP
- B-jet correction applied
 - Muon in jet + P_T -reco

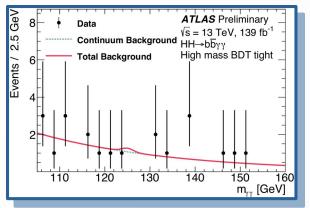
Taken from Evidence for the H->bb decay with the ATLASdetector

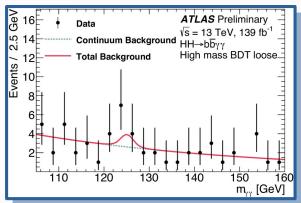
Choice of the continuum function

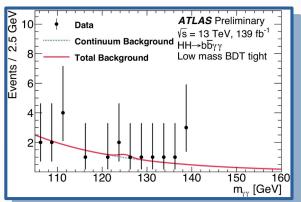

- Choice of the continuum function done via spurious signal method
 - Estimate the **signal bias** by fitting a background only MC template using a signal+background function
 - Exponential function chosen due to small bias and small number of free parameters

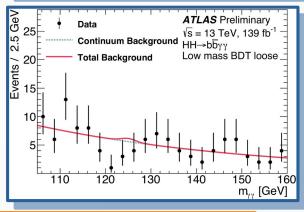

Statistical analysis

• Maximum likelihood fit in the 105 GeV < $m_{\gamma\gamma}$ < 160 GeV region (simultaneously for all non-resonant category)

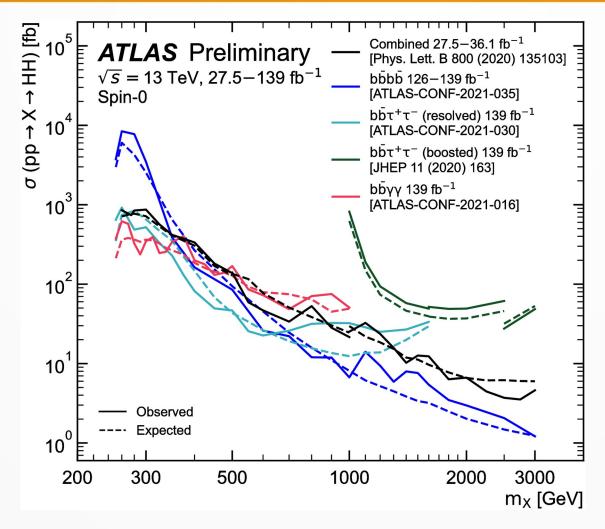

$$\mathcal{L} = \prod_{c} \left(\operatorname{Pois}(n_{c} | N_{c}(\boldsymbol{\theta})) \cdot \prod_{i=1}^{n_{c}} f_{c}(m_{\gamma\gamma}^{i}, \boldsymbol{\theta}) \cdot G(\boldsymbol{\theta}) \right)$$


Resonant





Non-resonant



$$N_c(\boldsymbol{\theta}) = \mu \cdot N_{HH,c}(\boldsymbol{\theta}_{HH}^{\text{yield}}) + N_{\text{bkg,c}}^{\text{res}}(\boldsymbol{\theta}_{\text{res}}^{\text{yield}}) + N_{\text{SS,c}} \cdot \boldsymbol{\theta}^{\text{SS,c}} + N_{\text{bkg,c}}^{\text{non-res}}$$

Single Higgs **yield fixed** to SM value (SM signal yield fixed in resonant analysis) while **µ float** in the fit

Higgs boson pair production, HULSKEN Raphaël

ATLAS resonant results

From CONF note