Search for non-resonant Filin the four b quark decay channel at CMS

CMS-PAS-HIG-20-005

11th Higgs Hunting Conference September 22th, 2021

Daniel Guerrero on behalf of the CMS Collaboration

University of Florida daniel.guerrero@cern.ch

Non-resonant HH production at the LHC

Direct access to measure the Higgs boson self-coupling (λ)

 λ is connected to the Higgs potential shape \rightarrow Crucial test of the SM (λ SM \sim 0.13)

Main production mechanisms: Gluon fusion (ggF) and Vector boson fusion (VBF)

SM couplings

- \blacksquare Very small cross section (σ)
- Elusive process at current data luminosities

Anomalous Higgs couplings

- \blacksquare Parameterized with coupling modifiers (κ)
- **Large** change on σ and HH mass
- Sensitivity for new physics at the LHC

EFT approach for new physics

- 5 coupling modifiers: $\kappa\lambda$, κ t, κ t, κ c2, κ c2, κ c2, κ c2
- 12 Benchmarks from <u>clustering method</u>

HH→ bbbb decay channel at CMS Run-2

It has the largest HH branching fraction (\sim 33%) \rightarrow \sim 1500 events produced during Run 2 (L=138 fb⁻¹) Signal reconstruction is ferociously challenged by the overwhelming production of multi-jet events

Expected signal Four jets from b quark hadronization

Reconstruction challenges:

- Jet identification: Large udsg/c/g jet background
- Higgs candidate reconstruction:
 - Jet combinatorics
 - Missing energy from neutrinos in B hadrons decays

Advanced identification and reconstruction methods

- Jet flavor tagging using <u>DeepJet</u> (DNN)
- b-jet energy regression (DNN)

HH→ bbbb decay channel at CMS Run-2

It has the largest HH branching fraction (\sim 33%) \rightarrow \sim 1500 events produced during Run 2 (L=138 fb⁻¹) Signal reconstruction is ferociously challenged by the overwhelming production of multi-jet events

Built using innovative techniques:

- Novel jet pairing for identification of Higgs candidates
- Advanced ggF and VBF categorization
- Powerful background modeling using machine learning

VBF HH→ bbbb (highly boosted H's) CMS-PAS-B2G-20-001, see Alessandra's talk!

Event preselection

Multijet triggers with 4 central jets, 3 b-tagged jets

Four b jet candidates:

- Minimum PT, central, quality requirements
- DeepJet cut (ε~75%, mistag-rate~1%)
- 4 most b-tagged jets

H1, H2 identified by pairing algorithm:

- If |d1-d2| ≥ 30 GeV:
 - d1 (a.k.a. closest to diagonal)
- Otherwise:

d1 or d2 based on Pt(H) in 4-jet CM frame

$$d = \frac{|M_{H1} - k M_{H2}|}{\sqrt{1 + k^2}}$$

PT (H1) > PT (H2)

k=125/120=1.04

d1 < d2 < d3

Very good performance w/o bkg. sculpting near the Higgs mass

MH2 [GeV] **↑**

MH1 [GeV]

Event regions

Several regions are defined to perform the analysis

Two b-tagging regions: '4b' (nominal selection) and '3b' (4th most b-tagged fails DeepJet cut)

MH1-MH2 plane regions:

Analysis region (A)

- HH signal-enriched to perform search
- Centered at $(C_1,C_2) = (125 \text{ GeV},120 \text{ GeV})$
- Divided in signal (Asr) and control regions (Acr)

Validation region (V)

- Signal-free region used to verify full background model closure
- Aligned with pairing diagonal symmetry at $(C_1,C_2) = (179 \text{ GeV}, 172 \text{ GeV})$
- Divided in validation signal (VsR) and control regions (VcR)

SR:
$$\sqrt{(m_{H_1} - C_1)^2 + (m_{H_2} - C_2)^2} < 25 \text{ GeV}$$

CR: $25 \text{ GeV} \le \sqrt{(m_{H_1} - C_1)^2 + (m_{H_2} - C_2)^2} < 50 \text{ GeV}$

50

200

m_{H1} [GeV]

Event categorization and subcategorization

VBF-jet candidates (excluding b-jets): Forward, quality requirements VBF-jet pair selection: Two highest PT jets with opposite- η hemispheres ($\eta(j1) \cdot \eta(j2) < 0$)

A Production Mode MVA (PMMVA) is used to improve purity of the categories

- BDT trained with 13 variables to capture VBF vs ggF topologies in Pre-VBF events
- Samples: Signal (VBF κ2V=2) vs background (SM ggF HH)

ggF subcategories

To address different mhh kinematics

- Low mhh (Cat.1): mhh <450 GeV
- High mнн (Cat.2): mнн ≥450 GeV

VBF subcategories

To address SM and BSM- κ_{2V} kinematics

- SM-like (Cat. 1): 0.5≤PMMVA<0.97
- BSM-1€2v (Cat. 2): 0.97≤PMMVA≤1.0

Background model overview

Data-driven multijet background model using '3b' data to derive '4b' background model 3b-to-4b shape differences are corrected with BDT re-weighting

The background model is built using Acr(3b) & Acr(4b) data

1. Normalization scaled by transfer factor $\alpha = Ncr(4b) / Ncr(3b)$

2. Residual mismodeling on key variables are addressed via weights using a trained multidimensional BDT reweighter

Use Acr info + Asr(3b) data \rightarrow Asr(4b) bkg model Normalization: Transfer factor For ggF, it considers 'parallel' mass (m₁₁) dependency

For VBF, it is constant

Shape: Asr(3b) distributions are re-shaped by reweighter

Full data/model closure is first verified in validation region

Performance in Asr(4b) region

2016 Data

300

Region 3b, All Categories

36 fb⁻¹ (13 TeV)

Events

Systematics and signal extraction

Systematic uncertainties:

Background model:

- Statistical uncertainty Asr(3b)
- 3b-to-4b transfer factor
- Validation: residual closure & limited precision
- Shape variation (e.g. ggF alternative training with CR variations) Signal model: experimental, generator, and theoretical

Optimal observables for signal extraction:

ggF categories 1,2: Enhance HH signal with BDT distribution

- Trained by category using 16 variables (SM ggF vs bkg model)
- Bkg split in two:
 - Each half is used to train a classifier
 - Train classifier is applied to the other half

VBF category 1,2: MhH distribution, Counting experiment

2017-2018 observables

Results: Upper limits

No excess of data events is observed relative to the background-only hypothesis 95% CL upper limits are set using the asymptotic CLs method

Obs. (exp.) limit on SM xs: 3.6 (7.3) x SM prediction

Obs. (exp.) allowed κ_{λ} interval:

 $\kappa_{\lambda} \in [-2.3, 9.4] ([-5.0, 12.0])$

VBF-only

Obs. (exp.) limit on SM xs: 226 (413) x SM prediction

Obs. (exp.) allowed κ_{2V} interval:

 $\kappa_{2V} \in [-0.1, 2.2] ([-0.4, 2.5])$

EFT Benchmarks

Conclusions

HH process can shed light on the structure of the Higgs potential

CMS Experiment at the LHC, CERN

Data recorded: 2016-Aug-13 15:04:59.113664 GMT

Run / Event / LS: 278802 / 7164845 / 11

HH→bbbb is one of the most sensitive channels

- Leverage on innovative analysis methods
- 5 x better sensitivity than 2016 result

Best LHC constraints on SM production

- Limit on HH xs: 3.6 x SM prediction
- Limit on VBF xs: 226 x SM prediction

Tight constraints on anomalous couplings

Thank you for your attention!

Additional Material

Data and MC samples

13 TeV pp collision data:

Dataset	Integrated Luminosity [fb ⁻¹]					
2016	36					
2017-2018	102					

Signal MC simulation:

- \blacksquare 4 ggF samples ($\kappa\lambda$ =0,1,2.45,5) at NLO precision using PowHeg (3 for ggF modeling + 1 for cross-check)
- 7 VBF samples with κv , κv , $\kappa \lambda$ combinations at LO using MadGraph (6 for VBF modeling + 1 cross-check)
 - 2 samples with alternative dipoleRecoil ON option (pythia dipole shower) for systematic uncertainties
- 12 EFT benchmarks = EFT LO samples re-weighted to NLO

Background MC simulation:

QCD (HT-binned), ttbar, single Higgs are used for cross check studies

Jet Pairing for Higgs candidate reconstruction

Challenge: 4 preselected b-jets → 3 possible pairings

Jet pairing method:

Step 1. Compute distance to the diagonal line (d) in plane

- Object ordering: pT(H1) > pT(H2)
- Diagonal defined with k = 125/120 = 1.04
- Pairs ordered by distance: $d_1 < d_2 < d_3$

Step 2. Select the pairing

If $\Delta d = |d_1 - d_2| \ge 30 \text{ GeV}$:

■ Choose d₁ pairing (closest to diagonal)

Otherwise:

• Choose d_1 or d_2 based on the highest pT(H) in 4-jet C.M. frame

Performance:

- Maximizes pairing performance w/o biasing bkg events near the Higgs mass (See slide 6)
- Correct pairing in 96% of SM ggF events. Ranging 82-96% (91-98%) depending on ggF (VBF) hypotheses

PMMVA

A classifier is trained to have categories with higher purity

Targets Pre-VBF events

Signal (S): VBF-HH (k2v=2)

- Signature with strongest contribution from longitudinal scattering amplitude V(L)V(L)→HH
- VBF-HH (k2v=0) has similar response

Background (B): NLO SM ggF-HH

Variable	Meaning
$p_T(H_1) (p_T(H_2))$	Tranverse momentum of the H ₁ (H ₂) candidate
$p_{T}(j_1) (p_{T}(j_2))$	Tranverse momentum of the j_1 (j_2) candidate
$ \eta(\mathrm{j}\mathrm{j}) $	VBF-jet pair pseudorapity
M(jj)	VBF-jet pair invariant mass
$\Delta R(H_1, H_2)$	ΔR distance between two Higgs bosons
$\Delta R(H_1,j_1)$	ΔR distance between H_1 and j_1
$\Delta R(H_1,j_2)$	ΔR distance between H_1 and j_2
$\Delta R(H_2, j_1)$	ΔR distance between H_2 and j_1
$\Delta R(H_2, j_2)$	ΔR distance between H_2 and j_2
$ \cos(\theta)^*(j1) $	$ \cos(\theta) $ of j_1 in the six-jet center of mass frame
$ \cos(\theta)^*(j2) $	$ \cos(\theta) $ of j_2 in the six-jet center of mass frame
H1-centrality · H2-centrality	Product of the Higgs boson centralities

where:

H1-centrality · H2-centrality:
$$\exp[-(\frac{\eta(H_1)-\eta_{avg}}{\Delta\eta})^2-(\frac{\eta(H_2)-\eta_{avg}}{\Delta\eta})^2]$$
, $\Delta\eta=\eta(j_1)-\eta(j_2)$ $\eta_{avg}=\frac{\eta(j_1)+\eta(j_2)}{2}$

Background model optimization and tests

Training in analysis control region:

- '3b' vs '4b' training variables used in BDT-reweighter
- ggF: b-jet PTs, input variables for BDT output
- VBF: b-jet PTs, M(HH) & correlated variables

BDT-hyperparameters optimization

- K-S test improvement in individual variables
- A classifier is trained to separate 'target' from 'model'
 - if no separation is possible (AUC=0.5)
 - Then, the model is good

All variables are well-modeled in Acr (4b)

Closure tests on the validation region:

Step 1: A background model is trained using validation control region data (VCR)

Step 2: Data/model distributions are compared in the validation region VsR(4b) to verify the method closure

All variables are well-modeled in VsR(4b)

Self-bias test to check signal contamination:

Bias is negligible at our level of sensitivity

List of BDT-reweighting variables

GGF categories 1,2

BDT Reweighter Input variables

Regressed p_T of the leading-p_T b jet of the H₁ candidate

Regressed p_T of the trailing-p_T b jet of the H₁ candidate

Regressed p_T of the leading-p_T b jet of the H₂ candidate

Regressed p_T of the trailing-p_T b jet of the H₂ candidate

Mass of the H_1 candidate, $M(H_1)$

Mass of the H_2 candidate, $M(H_2)$

Mass of the Higgs pair system, m_{HH}

Transverse momentum of the H_1 candidate, $P_T(H_1)$

Transverse momentum of the H_2 candidate, $P_T(H_2)$

Pseudorapidity separation between the two Higgs candidates, $\Delta \eta (H_1, H_2)$

 ΔR distance between two b jets of the H₁ candidate, $\Delta R(H_1(bb))$

 ΔR distance between two b jets of the H₂ candidate, $\Delta R(H_2(bb))$

 $|\cos(\theta)^*$ (H) in HH frame

 $|\cos(\theta)^*|$ (b) in H₁ frame

Sum of four b jets' regressed p_T

Transverse momentum of the HH system, $p_T(HH)$

Number of tight b-tags in 3 hightest b-tags

Sum of 3b's resolution scores

Minimal ΔR distance between two b jets, Min $|\Delta R(bb)|$

Maximum pseudorapidity separation between two b jets, Max $|\Delta\eta$ (bb)|

VBF category 1

BDT Reweighter Input variables

Regressed p_T of the leading-p_T b jet of the H₁ candidate

Regressed p_T of the trailing-p_T b jet of the H₁ candidate

Regressed p_T of the leading-p_T b jet of the H₂ candidate

Regressed p_T of the trailing-p_T b jet of the H₂ candidate

Mass of the H_1 candidate, $M(H_1)$

Mass of the H_2 candidate, $M(H_2)$

Mass of the Higgs pair system, m_{HH}

Transverse momentum of the H_1 candidate, $P_T(H_1)$

Transverse momentum of the H_2 candidate, $P_T(H_2)$

Pseudorapidity separation between the two Higgs candidates, $\Delta \eta (H_1, H_2)$

Azimuthal angle separation between the two Higgs candidates, $\Delta \phi(H_1, H_2)$

Mass of the VBF-jet pair system, M(jj)

Pseudorapidity separation between the two VBF jets, $\Delta \eta$ (j1, j2)

PMMVA score

Input features

BDT output

Signal observables – Pre-fit w/o reshaping

2016 dataset

2017-2018 dataset

All signal extraction observables - post-fit

2016 dataset

2017-2018 dataset

Upper limit on signal strength by year and categ

No excess data events is observed relative to the background-only expectation 95% CL upper limits are set using the asymptotic CLs method

Additional results: Likelihoods scans

Assuming that a HH signal exist, one can measure couplings using via the negative log-likelihood scan

- Simultaneous fit of the ggF and VBF signal contributions as function of the couplings
- One-dimensional likelihoods → Besf-fit + 68% and 95%CL intervals
 - Scan for κ_{λ} , assuming $\kappa_{2V}=\kappa_{V}=\kappa_{t}=1$
 - Scan for κ_{2V} , assuming $\kappa_{\lambda} = \kappa_{V} = \kappa_{t} = 1$
- Two-dimensional likelihoods → Best-fit + 68% and 95%CL contours
- Observed best-fit values compatible with the SM at 95% CL

Likelihoods for various couplings

Scan versus κ_{λ} , assuming $\kappa_{2\nu} = \kappa_{\nu} = \kappa_{\nu} = 1$

Contours in (K2V, KV) plane

Contours in (κλ,κ2ν) plane

Systematic uncertainties

Signal experimental:

- Luminosity uncertainties in 2016 (1.2%), 2017 (2.3%) and 2018 (2.5%)
- Pile-up reweighting, L1 Pre-firing (2016, 2017)
- b-tagging and trigger efficiency
- Jet energy scale, jet energy resolution

Signal generation and theory:

- Factorization scales, Parton-Shower (PS), and PDF
- Event migration due to PS ISR recoil scheme (only for VBF signals)
- Cross section and final state branching fraction

Background modeling:

- Bin-by-bin uncertainty: to account for Poisson fluctuations of the ASR(3b) data
- \blacksquare 3b \rightarrow 4b Transfer factor statistical uncertainty: from limited CR statistics
- Shape uncertainty:
 - ggF cat. 1,2: Alternative shape derived using alternative CR definition
 - VBF cat. 1: Linear fit to M(HH) data/bkg ratio in validation region
- Uncertainty due to Vsr(4b) statistical power with respect to Asr(4b)
- Uncertainty on normalization closure in Vsr(4b): 1.5 4.7% depending on the category and year

Higgs Pair Production Cross Section

EFT approach for new physics

If the BSM physics scale is beyond the direct reach of the LHC, its effects on the ggF HH production can be studied through a EFT model with three contact interactions (coupling strenghts): ttHH (C2), ggHH (C2g) and ggH (Cg)

12 EFT Benchmarks are defined for LHC searches

They represent topologies of large regions of the 5-dimensional parameter space

	1	2	3	4	5	6	7	8	9	10	11	12
Κλ	7.5	1.0	1.0	-3.5	1.0	2.4	5.0	15.0	1.0	10.0	2.4	15.0
Κt	1.0	1.0	1.0	1.5	1.0	1.0	1.0	1.0	1.0	1.5	1.0	1.0
C2	-1.0	0.5	-1.5	-3.0	0	0	0	0	1.0	-1.0	0	1.0
Cg	0	-0.8	0	0	0.8	0.2	0.2	-1.0	-0.6	0	1.0	0
C2g	0	0.6	-0.8	0	-1.0	-0.2	-0.2	1.0	0.6	0	-1.0	0

LO model <u>arXiv:1806.05162</u> NLO corrections <u>arXiv:1806.05162</u>

	Statist	ical-only	Statistical + Systematic			
	ATLAS	CMS	ATLAS	CMS		
bbbb	1.4	1.2	0.61	0.95		
bbττ	2.5	1.6	2.1	1.4		
ррХХ	2.1	1.8	2.0	1.8		
bbVV→bblvlv	-	0.59	-	0.56		
bbZZ→bb4l	- 0.37		-	0.37		
Combination	3.5	2.8	3.0	2.6		
	Combined		Combined			
		4.5	4.0			

Expected significance for SM HH production in standard deviations

Expected combined κ_{λ} interval $0.57 \le \kappa_{\lambda} \le 1.5$ at 68% C.L.