ATLAS Di-Higgs results

Petar Bokan (DESY), Higgs Hunting 2021 on behalf of the ATLAS Collaboration September 22, 2021, Orsay and Paris

Outlook

- o Introduction
- o Non-resonant Higgs boson pair production
- o Resonant Higgs boson pair production
- o Conclusion

With focus on the most recent results

SM HH production at the LHC

- o Standard Model (SM) predicts non-resonant HH production
- o Interesting as a direct probe of the Higgs boson self-coupling, also VVHH coupling
- o Small predicted cross-section in the SM

Vector boson fusion (VBF) HH production, 1.73 ± 0.04 fb @ 13 TeV *

* Full list of references available at the LHCHXSWGHH website

I	in the	~	Ы		_	44	_	
1	nur	υ	u	u	L	ιı	υ	

Decay channels and public results (non-resonant)

HH decay modes and their total relative branching ratios $$10.23731/{\rm CYRM-2017-002}$$

Limits on the non-resonant HH cross-section assuming the SM kinematics available for the highlighted channels

I	in the	~	Ы		_	44	_	
1	nur	υ	u	u	L	ιı	υ	

Decay channels and public results (non-resonant)

	bb	WW	
bb	33%		27.5 - 36.1 f 139 fb ⁻¹
VW	25%	4.6%	
au au	7.4% ATLAS- CONF-2021-030	2.5%	$bbll (l = e \text{ or } \mu)$ $(bbWW, bb\tau\tau, bbZZ)$ PLB801(2020)135145
ZZ	3.1%	1.2%	Combination
$\gamma\gamma$	0.26% Atlas- Conf-2021-016	0.10% EPJC78(2018)1007	(bbbb, bbWW, WWWW, bbττ, bbγγ and WWγγ) PLB800(2020)135103

 $6.1 ext{ fb}^{-1} \leftarrow \text{only } gg \text{F considered}$

 $\leftarrow gg\mathsf{F} + \mathsf{VBF} \text{ considered} \\ \text{for } bb\gamma\gamma \text{ and } bb\tau\tau \\$

HH decay modes and their total relative branching ratios 10.23731/CYRM-2017-002

Limits on the non-resonant HH cross-section assuming the SM kinematics available for the highlighted channels

I	in the	~	Ы		_	44	_	
1	nur	υ	u	u	L	ιı	υ	

. .

Decay channels and public results (non-resonant)

	66	W W		
1.1.	33%		$27.5 - 36.1 \text{ fb}^{-1}$	\leftarrow only ggF considered
00	JHEP01(2019)030		$139 { m fb}^{-1}$	$\leftarrow ggF + VBF \text{ considered}$
1/11/	25%	4.6%		for $bb\gamma\gamma$ and $bb au au$
V VV	JHEP04(2019)092	JHEP05(2019)124		
au au	7.4%	2.5%	$bbll \ (l = e \text{ or } \mu)$	
	ATLAS- CONF-2021-030		PLB801(2020)135145	
77	3.1%	1.2%		Constraints on $()^{SM}$
			Combination	$(bbbb, bb\tau\tau \text{ and } bb\gamma\gamma)$
$\gamma\gamma$	0.26%	0.10%	$(bbbb, bbWW, WWWW, bb\tau\tau, bb\gamma\gamma \text{ and } WW\gamma\gamma)$	
11	ATLAS- CONF-2021-016	EPJC78(2018)1007	PLB800(2020)135103	Additionally,
				constraints on

HH decay modes and their total relative branching ratios 10.23731/CYRM-2017-002

Limits on the non-resonant HH cross-section assuming the SM kinematics available for the highlighted channels

4/15

 $\kappa_{2V} = c_{2V} / c_{2V}^{\mathsf{SM}}$

 $(bbbb, 126 \text{ fb}^{-1})$

JHEP07(2020)108

Introduction	Non-resonant	Resonant	Conclusion
See Tatjana's talk	$HH \rightarrow$	$bar{b} au^+ au^-$ (1	39 fb ^{-1})
 Final states conside (lep/had = leptonic 	red: $ au_{ m had} au_{ m had}$ and $ au_{ m lep} au_{ m had}$:/hadronic $ au$ lepton decay)	0 0 0 0 0 0 0 0 0 0 0 0 0 0	eliminary Data 139 b ⁻¹ − SM HH at exp. limit Top-quark Jet → τ _{un} fakes (M) at 2 − sr + (bh.c.c.) Jet → τ _{un} fakes (th)
• Three signal regions mode and trigger ca (single- e/μ , $\tau_{\rm had}$ tr	; (SRs) based on the di- $ au$ density density density iggers, and $e/\mu+ au_{ m had}$ triggers	cay 07 10 ⁶ ers) 07 10 ⁶	Other SM Higgs SM Higgs SM Higgs States - Frefit background
 Majority of backgro estimated using dat 	unds with jets misidentified a a-driven techniques	as $ au_{had}$ SY 1	
• Backgrounds with t $(t\bar{t} \text{ and } Z \rightarrow \tau \tau + b\bar{t})$	rue- $ au_{ m had}$ simulated b norms freely floated in the f	final fit)	-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 BDT score

- Multivariate analysis (MVA) classifiers used to distinguish the signal from backgrounds
- $\circ~$ MVA scores used as final discriminants in the fit

Introduction	Non-resonant	Resonant	Conclusion
See Tatjana's talk	HH ightarrow	$bar{b} au^+ au^-$	(139 fb ⁻¹)
 Final states consid (lep/had = leptoni 	ered: $ au_{ m had} au_{ m had}$ and $ au_{ m lep} au_{ m had}$ ic/hadronic $ au$ lepton decay)	12 1-030 Events /0.14	ATLAS Freiliminary Data G = 13 TeV, 139 fb ⁻¹ Signal Region Signal Region Z → τ ₁ ≤ (bbb,cc)
• Three signal region mode and trigger of (single- e/μ , $\tau_{\rm had}$ t	is (SRs) based on the di- $ au$ decategory : riggers, and $e/\mu+ au_{ m had}$ trigg	cay 7-4 10 ers) 00 10 00	Coher - Shi Haga Si Miaga Si Uncertainty - Perf background
 Majority of backgr estimated using data 	ounds with jets misidentified ata-driven techniques	as τ_{had} SY τ_{had}	
• Backgrounds with $(t\bar{t} \text{ and } Z \rightarrow \tau \tau + t)$	true- $ au_{ m had}$ simulated bb norms freely floated in the	final fit)	E
 Multivariate analysis 	ric (MVA) classifiers used to	00 10 10	ATLAS Preliminary S = 13 TeV, 139 fb ⁻¹ SM HH at exp. limit

- Multivariate analysis (MVA) classifiers used to distinguish the signal from backgrounds
- $\circ~$ MVA scores used as final discriminants in the fit

95% CL	limit on σ_{HH}	$_{H}/\sigma_{HH}^{ m SM}$ (ggF + VBF):
-1σ	Expected	$+1\sigma$	Observed
2.8	3.9	5.4	4.7

Introduction	Non-reso	nant	Resonant	Conclusion
See Tatjana's	talk E	IH ightarrow	$bar{b} au^+ au^-$	(139 fb^{-1})
 Final states (lep/had = Three sign: mode and (single-e/µ Results all expected free previous pap 12.7) c identification of 	s considered: $\tau_{had}\tau_{had}$ leptonic/hadronic τ le al regions (SRs) based trigger category , τ_{had} triggers, and e/μ most twice better that por just the increased the PRL 121(2018)1918 lue to improved recor- n techniques, new trig analysis-specific impro-	and $\tau_{\rm lep} \tau_{\rm had}$ epton decay) on the di- τ dec $\mu + \tau_{\rm had}$ trigge $\mu + \tau_{\rm had}$ trigge μ what would dataset w.r.t. 301 (exp. 14.8 istruction and ggers and a nu- ovements	ay solution of the solution of	ATLAS Preliminary G-13 Tu (23 b 4) Signal Region ATLAS Preliminary C-14 Tu (26 b 4) Signal Region ATLAS Preliminary -0.8 - 0.8 - 0.4 - 0.2 0 4 0.8 0.5 BDT score ATLAS Preliminary -0.8 - 0.8 - 0.4 - 0.2 0 4 0.8 0.5 BDT score ATLAS Preliminary -0.8 - 0.8 - 0.4 - 0.2 0 4 0.8 0.5 BDT score ATLAS Preliminary -0.8 - 0.8 - 0.4 - 0.2 0 4 0.8 0.5 BDT score ATLAS Preliminary -0.8 - 0.8 - 0.4 - 0.2 0 4 0.8 0.5 BDT score
95% Cl -1σ 2.8	$ \frac{1}{1} \lim_{K \to 0} \cos \sigma_{HH} / \sigma_{HH}^{SM} (1) $	(ggF + VBF): Observed 4.7	100 100 100 100 100 100 100 100 100 100	

- o Events split into low- and high-mass SRs
 - Low-mass region sensitive to large $|\kappa_\lambda|$
 - High-mass region sensitive to the SM signal and small $|\kappa_\lambda|$
- $\circ~$ Signal and single-Higgs background $m_{\gamma\gamma}$ shapes modelled with a double-sided Crystal Ball function
- Continuum di-photon background modelled using an exponential functional form (by fitting the data in the sidebands)
- $\circ~$ Boosted decision trees trained on $\kappa_\lambda=1$ and 10 signals in the high- and low-mass SRs, respectively.
- o Loose and tight BDT score categories defined

- o Events split into low- and high-mass SRs
 - Low-mass region sensitive to large $|\kappa_{\lambda}|$
 - High-mass region sensitive to the SM signal and small $|\kappa_\lambda|$
- $\circ~$ Signal and single-Higgs background $m_{\gamma\gamma}$ shapes modelled with a double-sided Crystal Ball function
- Continuum di-photon background modelled using an exponential functional form (by fitting the data in the sidebands)
- $\circ~$ Boosted decision trees trained on $\kappa_{\lambda}=1$ and 10 signals in the high- and low-mass SRs, respectively.
- o Loose and tight BDT score categories defined

95% CL limit on $\sigma_{HH}/\sigma_{HH}^{\rm SM}$ (ggF + VBF):

Expected	Observed
5.5	4.1

Expected	Observed
5.5	4.1

Results are extracted from a fit of the $m_{\gamma\gamma}$ distributions in the range $105 < m_{\gamma\gamma} < 160~{\rm GeV}$

- $\circ~$ Analysis optimized to search for VBF HH production
- Multijet background constitute about 95% of the total background (data-driven)
- $\circ~t\bar{t}$ background simulated, normalisation of all-hadronic $t\bar{t}$ determined from data
- $\circ~gg{\rm F}~HH$ production normalised to the SM expectation and treated as background

Resonant production $m_X > 2 \times m_H$

Resonant HH production at the LHC

- o Main focus on resonant ggFHH production
- o Results based on the full Run 2 dataset available for $bbbb, \, bb\tau\tau$ and $bb\gamma\gamma$ channels

Resonant ggF HH production

Typical benchmark hypotheses considered in the ATLAS publications:

- o Narrow-width spin = 0 resonance
- o Kaluza-Klein graviton in the bulk Randall–Sundrum model (spin = 2)

Resonant $HH ightarrow b ar{b} b ar{b}$ (126 – 139 fb⁻¹)

Resolved

- o $m_X \in [251, 1500] \; {\rm GeV}$
- o b-jet, b-jet + jet and H_T ($\sum_{
 m jets} |E_T|$) triggers
- o BDTs used to pair b-jets
- $\circ~$ Fully data-driven background estimation ($\sim 95\%$ multijet, rest $t\bar{t})$

Neural-network reweighting correction applied

Boosted

- o $m_X \in [900, 3000] \text{ GeV}$
- o Large-radius jet triggers
- At least two large-radius jets required
- Considers 2b, 3b and 4b categories (large-radius jet matched to 1 or 2 b-tagged track jets)
- o Fully data-driven multijet background estimation
- $\circ~t\bar{t}$ background simulated (corrections applied in the 2b and 3b categories)

Non-resonant

Resonant

Conclusion

Resonant $HH
ightarrow b \overline{b} b \overline{b}$ (126 – 139 fb⁻¹)

o Final discriminant: (corrected) m_{HH}

Resonant $HH ightarrow bb au au / bb \gamma \gamma$ (139 fb⁻¹)

used to distinguish signals from background

- Final discriminants: PNN(m_{HH}) scores

Resonant $HH \rightarrow bb\tau \tau/bb\gamma \gamma$ (139 fb⁻¹)

Introduction

Resonant $HH ightarrow b ar{b} b ar{b}$ (spin-2, 139 fb $^{-1}$)

• Bulk Randall–Sundrum model excluded for graviton masses between 298 and 1440 GeV $(k/\bar{M}_{\rm Pl} = 1)$ at 95% CL

Conclusion

- New results
 - bbbb (resonant)
 - bb au au (resonant, limits on non-resonant ggF + VBF cross-section)
 - $bb\gamma\gamma$ (resonant, limits on non-resonant ggF + VBF cross-section, κ_{λ} constraints)
- o Large sensitivity improvements compared to the previous iterations

Other interesting results (based on partial Run 2 dataset):

- ATLAS-CONF-2019-049 Constraints on κ_{λ} from the combination of Hand HH production analyses
- Phys.Let.B 800(2020)135103 Constraints on the hMSSM and EWK-singlet models from HH analyses
- ATL-PHYS-PUB-2018-053 HL-LHC prospects (bbbb, $bb\tau\tau$ and $bb\gamma\gamma$)

15/15

Thank you for your attention

Backup

Combined results $(27.5 - 36.1 \text{ fb}^{-1})$

^{16/15}

Combined results $(27.5 - 36.1 \text{ fb}^{-1})$

^{16/15}

Combined κ_{λ} results (27.5 – 36.1 fb⁻¹)

Combined κ_{λ} results (27.5 – 36.1 fb⁻¹)

Resonant $HH \rightarrow bb au au$ (139 fb⁻¹)

• The largest excess observed at 1 TeV, with a local (global) significance of $3.0\sigma (2.0^{+0.4}_{-0.2}\sigma)$ • Largest local significance for $\tau_{\rm had}\tau_{\rm had}$ ($\tau_{\rm lep}\tau_{\rm had}$) channel: $2.8\sigma (1.5\sigma)$ at 1 TeV (1.1 TeV) 18/15

Resonant $HH \rightarrow bbbb$ (139 fb⁻¹)

• The largest excess observed at 1.1 TeV, with a local (global) significance of 2.6σ (1.0σ) • Spin-2: local (global) significance of 2.7σ (1.2σ)