Higgs Hunting 2021 Theory highlights and concluding remarks

Laura Reina Florida State University

Particle physics in the LHC era: a unique time

So much of the LHC physics potential is ahead of us:

- $\hookrightarrow\,$ c.o.m. energy will increase from 13 TeV to 14 TeV.
- \hookrightarrow 2-fold increase in statistics by the end of Run 3.
- \hookrightarrow 20-fold increase in statistics by the end of the HL-LHC!

The LHC era: Exploring the TeV scale

- LHC Run 1: the Higgs discovery has been a game changer.
- LHC Run 2: a wealth of new measurements.
 - ▷ Improved precision measurements of SM processes, total and differential rates.
 - ▷ Entering the era of precision Higgs physics.
 - $\triangleright~$ More stringent bounds on new physics scenarios.
- The LHC Run 3 and the HL-LHC are a reality.
- Updated scenarios for **future colliders are being proposed** based on LHC results, HL-LHC projections, and theory recommendations.
- Intriguing results coming from **rare processes**, **flavour physics**, **cosmology**, ... can give important indications.

With no evidence of new physics or a preferred way beyond the Standard Model progress crucially relies on our ability to discern, describe, and interpret the complexity of LHC events. **Higgs physics** has been at the core of the LHC physics program and will continue to be so for Run 3 and the HL-LHC upgrade, as well as for all future colliders currently under discussion.

- \hookrightarrow Measuring anomalies in SM Higgs properties (couplings, CP, ...).
- \hookrightarrow Searching for new signatures (anomalous interactions, exotic decays, new particles, ...).

\hookrightarrow See ATLAS and CMS talks

The role of theory is very challenging

- \hookrightarrow Posing the right questions!
- \hookrightarrow Setting the SM framework unambiguously.
- \hookrightarrow Recognizing and interpreting new phenomena
 - \hookrightarrow Model-specific approach: more stringent, yet arbitrary.
 - \hookrightarrow Effective Field Theory approach: less arbitrary, more systematic, but less prone to a simple, direct interpretation.

Several contributions presented at this meeting

See talks by Craig, Gori, Mantani, Michel, Pages, Pellen, Plehn, Ramos, Ravasio, Tong, ...

Key Question: What is the origin of the EW scale?

The Higgs discovery has posed us some fundamental questions and given us a unique handle on BSM physics.

- Why the $M_H \ll M_{pl}$ hierarchy problem? What are the implications for Naturalness? (\rightarrow Naturalness strategy)
- Can we uncover the nature of UV physics from precision Higgs measurements?
 (→ Elementary vs composite? Yukawa force? One/more Higgses?)
- Can Higgs physics gives us insight into **flavor physics** and vice versa?
- Can we measure the shape of the **Higgs potential**?
- Can Higgs physics point us to new physics that could also explain the nature of **dark matter** and the origin of **baryogenesis**?

 $\hookrightarrow |$ See Craig's, Pages's, and Plehn's talks

Pursuing these theory-motivated benchmarks will shape our investigation and understanding of BSM physics.

Setting the SM framework

LHC Run 1+Run 2: M_H promoted to EW precision observable

Crucial to realize the EW precision program of the HL-LHC.

Still a crucial constraint for all BSM models

 \hookrightarrow See Tong's talks

Effects of New Physics can now be more clearly disentangled in both EW observables and Higgs-boson couplings \longleftrightarrow probing EWSB

LHC Run 1+Run 2: first measurement of SM Higgs couplings

- \hookrightarrow Higgs couplings to gauge bosons measured to 5-10% level.
- \hookrightarrow Higgs couplings to 3^{rd} -generation fermions measured at 10-20%
- \hookrightarrow First measurement of Higgs couplings to 2^{nd} -generation fermions: $\kappa_{\mu}!$
- \hookrightarrow Projections for HL-LHC look impressive!
- \hookrightarrow Next challenge: probe new structures! (EFT interactions, CP, ...)
- \hookrightarrow Ultimate challenge: measuring the Higgs self-coupling(s).

Exploring CP-violation in Higgs couplings

 \hookrightarrow See Gori's talk

A concrete Example: a complex 2HDM

The ultimate challenge: measuring the Higgs potential

800

Higgs self-coupling

Higgs self-coupling and baryogenesis

- Sakharov conditions

baryon number violation C and CP violation departure from thermal equilibrium \rightarrow 1st-order e-w phase transition

D6-Higgs potential [Grojean, Servant, Wells]
 general potential [Reichert, Eichhorn, Gies, Pawlowski, TP, Scherer]

A unique physics program in front of us!

From Run 2 data: not only total but also differential cross sections.

We can explore new physics in different regimes.

Is theory ready to take the challenge?

Theoretical systematics: warning of a possible limiting factor

HL-LHC (S2: Theory syst. half of LHC) **Error dominated by Theory systematics**

$$\kappa = \frac{g_{HX}}{g_{HX}^{SM}} = 1 + \Delta \kappa \longrightarrow \Delta \kappa \approx O\left(\frac{v}{\Lambda}\right)$$

 \hookrightarrow Higher precision probes higher Λ

Breakdown of residual uncertainties:

 $\mu_{\text{ATLAS}} = 1.06 \pm 0.07 = 1.06 \pm 0.04 \text{(stat.)} \pm 0.03 \text{(exp.)}_{-0.04}^{+0.05} \text{(sig.th.)} \pm 0.02 \text{(bkg.th.)}$ $\mu_{\text{CMS}} = 1.02_{-0.06}^{+0.07} = 1.02 \pm 0.04 \text{(stat.)} \pm 0.04 \text{(exp.)} \pm 0.04 \text{(th.)}$

LHC: Large Theory systematics

 $\mu_{if} = \frac{\sigma_i}{\sigma_i^{SM}} \times \frac{B_f}{B_f^{SM}}$

 \downarrow

With no evidence of new physics or a preferred way beyond the Standard Model, but compelling arguments to explore the TeV scale,
progress crucially relies on our ability to discern, describe, and interpret the complexity of LHC events.

What does complexity mean for theory?

Embracing complexity in modelling and interpreting LHC events.

- Push precision for *standard candles* and improve description of key processes.
 - Higher-order perturbative QCD and EW corrections.
 - N²LO QCD for all processes (total rates and distributions) and N³LO QCD for keystone processes $(gg \rightarrow H, pp \rightarrow \gamma^*/Z/W^{\pm},...)$.
 - NLO EW+QCD corrections for all processes.
 - Improved PDF (>NLO QCD, QED)
 - **Resummation** of specific kinematic- or cut-induced large (logarithmic) corrections needs to be included.
 - Effects previously neglected need to be reconsidered (mass effects, ...).
 - NNLO+PS matching to parton-shower Monte Carlo event generators
 - Extended precision to high-multiplicity processes.
 - Include accurate modelling of final-state decays.
 - Study off-shell effects.
 - Non-pertubative effects.
- Use cutting-edge techniques to extract more information from otherwise difficult data.
 - Precursor: jet substructure.
 - New approach to QCD dynamics via ML/DL techniques.
 - ML/AI algorithms to select difficult signals.

- Parametrize new physics in terms of more general effective interactions.
 - Parametrize BSM via EFT extension of SM Lagrangian.

$$\mathcal{L}_{\rm SM}^{\rm eff} = \mathcal{L}_{\rm SM} + \sum_{d>4} \frac{1}{\Lambda^{d-4}} \mathcal{L}_d = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots$$

- Constrain parameter space via SM fits and direct search results.
- Connect to flavour physics within usual EFT language (SMEFT \rightarrow WET).
- Account for NP effects at all levels (signal, background, PDF fits, ...)
- Interpret patterns by connecting to specific benchmark models.

Extend precision to high multiplicity processes and fiducial signatures.

Double Higgs production via VBF at the LHC

 \hookrightarrow See Pellen's talk

 $pp \rightarrow HHjj$ manly VBF but also $VHH \rightarrow HHjj$

- VBF and $VHH \rightarrow HHjj$ at NLO QCD+EW
- VBF-only approximation at NNLO QCD+NLO QED

- Effect of VBF approximation up to 20%.
- EW Sudakov logarithms in tails of distributions: -25%.
- EW corrections comparable to QCD ones.

(Dreyer et al., 2005.13341)

NLO+PS generator for $gg \rightarrow H \rightarrow VV$ including non-resonant and off-shell effects

 \hookrightarrow See Ravasio's talk

6

Invariant (transverse) mass of the VV system left unchanged by the parton shower. The relative size of the **signal** and of its **interference** with the QCD **background** increases in the tail.

- Contribute at NNLO QCD to $pp \rightarrow VV \rightarrow 4l$
- QCD background is dominant and cannot be distinguished from the signal.
- Sensitive to $H \to VV$
- Offshell Higgs cross section important to determine $\Gamma_H \ll$ detector resolution.
- Implemented in POWHEG BOX RES, with V leptonic decays.

Fiducial predictions for $gg \rightarrow H \rightarrow \gamma \gamma$ at 3 loops

 \hookrightarrow See Michel's talk

- Inclusive cross section known at N³LO (Anastasiou et al.)
- But LHC experiments apply kinematic selection cuts on Higgs decay products.
- Need complete interplay of QCD corrections and O(1) fiducial acceptance.

- Consider $gg \to H \to \gamma \gamma$ with ATLAS fiducial cuts (on p_T^{γ} and eta^{γ}).
- Computed fiducial spectrum for $q_T \equiv p_T^H = p_T^{\gamma\gamma}$ at N³LL'+N³LO.
- Computed total fiducial cross section at N^3LO , improved by resummation.

Use cutting-edge techniques to extract more information from otherwise difficult data.

$b\bar{b}H$: direct measurement of y_b obfuscated by several SM backgrounds

NLO QCD+EW corrections pollute the sensitivity to y_b and makes a cut base analysis hopeless: **RIP Hbb** [Pagani, Shao, Zaro, arXiv:2005.10277]

ratios	$\frac{\sigma(y_b^2)}{\sigma(y_b^2) + \sigma(\kappa_Z^2)} \equiv \frac{\sigma_{\rm NLO_{QCD+EW}}}{\sigma_{\rm NLO_{all}}}$	$\frac{\sigma(y_b^2)}{\sigma(y_b^2) + \sigma(y_t^2) + \sigma(y_by_t)}$	$\frac{\sigma(y_b^2)}{\sigma(y_b^2) + \sigma(y_t^2) + \sigma(y_b y_t) + \sigma(\kappa_Z^2)}$
	$(y_b \text{ vs. } \kappa_Z)$	$(y_b \text{ vs. } y_t)$	$(y_b \text{ vs. } \kappa_Z \text{ and } y_t)$
NO CUT	0.69	0.32	0.28
$N_{j_b} \ge 1$	0.37 (0.48)	0.19	0.14
$N_{j_b} = 1$	0.46 (0.60)	0.20	0.16
$N_{j_b} \ge 2$	0.11	0.11	0.06

A kinematic-shape based analysis based on game theory (Shapley values) and BDT opened new possibilities: **Resurrecting** $b\bar{b}h$ with kinematic shapes [Grojean, Paul, Qian, arXiv:2011.13945]

New techniques will open the possibility of turning problematic processes into powerful tests of the quantum structure of the SM.

Parametrize new physics in terms of more general effective interactions.

Parametrizing New Physics beyond specific BSM models

Extension of the SM Lagrangian by d > 4 effective field theory (EFT) operators:

$$\mathcal{L}_{\rm SM}^{\rm EFT} = \mathcal{L}_{\rm SM} + \sum_{d>4} \frac{1}{\Lambda^{d-4}} \mathcal{L}_d = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots$$

where

$$\mathcal{L}_d = \sum_i C_i^{(d)} \mathcal{O}_i^{(d)}, \quad \left[\mathcal{O}_i^{(d)}\right] = d,$$

under the assumption that new physics lives at a scale $\Lambda > \sqrt{s}$.

Expansion in $(v, E)/\Lambda$: affects all SM observables at both low and high-energy.

- SM masses, couplings \rightarrow rescaling
- shape of distributions → more visible in high-energy tails

Systematic, yet complex approach.

 \downarrow

Studying correlations among operators can point to specific BSM patterns.

 $\leftarrow [Ellis, Madigan, Mimasu, Sanz, You, arXix:2012.02779]$

Global SMEFT fits: Gauge+Higgs+Top

Constrain new physics via flavour observables

$$\mathcal{L}_{\mathrm{SM}}^{\mathrm{EFT}} \stackrel{\Lambda \ll \Lambda_{EW}}{\longrightarrow} \mathcal{L}_{\mathrm{Weak}}^{\mathrm{EFT}} = \sum_{i=1}^{10} C_i^{\mathrm{WEFT}} \mathcal{O}_i^{\mathrm{WEFT}}$$

where

 $\mathcal{O}_i^{\text{WEFT}} \to 4\text{-fermion operators of quarks}(\text{except } t) \text{ and leptons } C_i^{\text{WEFT}} \to \text{depend on } C_i^{\text{SMEFT}}$

Strong constraints from B-meson semileptonic decays and intriguing relation with flavor anomalies.

[Bißman, Grunwald, Hiller, Kröninger, arXiv:2012.10456]

Bounding the scale of new physics: EFT

Global fit to EFT operators Combining EW+Higgs PO

[J. de Blas et al., arXiv:1905.03764]

Important goals:

- \hookrightarrow Study effects of neglected higher orders in EFT: reduce *interpretation* errors.
- \hookrightarrow Study effects of adding **SM corrections** (QCD+EW NLO) \rightarrow mixing through evolution.
- \hookrightarrow Consider **global fit**, not just single operators.
- \hookrightarrow Extend set of fitted observables (distributions, STXS, etc.).
- \hookrightarrow Study inclusion of **theory errors** and their correlations in global fits.

Global SMEFT fits: validity of linear approximation

\hookrightarrow See Mantani's talk

$$\mathcal{O} = \mathcal{O}_{SM} + \frac{C_i^2}{\Lambda^2} \mathcal{O}_i^{INT} + \frac{C_i C_j}{\Lambda^4} \mathcal{O}_{ij}^{SQ}$$

Only testing the sensitivity of the fit. Moving forward:

- \hookrightarrow Isolate sectors that could be more/less sensitive (no linear contributions)
- \hookrightarrow Test results in renormalized EFT \rightarrow See Ramos's talk
- \hookrightarrow If indication of strong dynamics, compare to benchmark models.

Bounding the scale of new physics: specific models

Example of a **composite Higgs model**:

[J. de Blas et al., arXiv:1905.03764]

 $g^*, m^* \to \text{coupling and mass scale of the new resonances}$ $g^*, m^* \leftrightarrow \{O_{\phi}, O_6, O_T, O_W, O_B, O_{2W}, \ldots\}$

Where the bottom-up meets the top-down!

Outlook

- The Higgs physics program ahead of us is extremely intriguing and promises to start answering some of the remaining fundamental questions in particle physics.
- Groundbreaking new ideas and more powerful techniques allow us to take much higher challenges: **embrace the complexity of LHC events!**
- Indirect evidence of new physics from Higgs, top, and EW precision measurements could come from the synergy between
 - \rightarrow pushing theoretical predictions to a new level of accuracy,
 - $\rightarrow\,$ a systematic approach to the study of new effective interactions,
 - \rightarrow the intuition and experience of many years of Beyond SM searches!
- Increasing the precision on SM observables could allow to test higher scales of new physics: a factor of 10 in precision could give access to scales well above 10 TeV.
- **Direct evidence** of new physics will boost this process, as the discovery of a Higgs-boson has prompted and guided us in this new era of LHC physics.

Thank you!!

to the organizers and all the participants