

Quantum Generative Models for muonic force carriers events

Oriel Kiss, Michele Grossi, Enrique Kajomovitz, and Sofia Vallecorsa

Key point: We use a quantum circuit Born machine to generate multivariate and conditional distributions in HEP and evaluate it on actual quantum hardware.

Quantum Generative models:

Quantum computing proposes an alternative to neural networks.

QNN with classical random source [1]

Pros: - continous

- low number of qubits

Cons: - high number of shots

- 1 sample = many shots

- no clear advantage

Born machinesusing quantumrandomness [2,3]

Pros: - uses true quantum randomness

- 1 shot = 1 sample

- fundamentaly different approach

Cons: - discrete

- needs more qubits

- [1] Style-based quantum generative adversarial networks for Monte Carlo events, Carlos Bravo-Prieto et al (2021) https://arxiv.org/abs/2110.06933
- [2] Differentiable Learning of Quantum Circuit Born Machine, Jin-Guo Liu and Lei Wang (2018) https://arxiv.org/abs/1804.04168
- [3] The Born supremacy: quantum advantage and training of an Ising Born machine, Brian Coyle et al, (2021) https://www.nature.com/articles/s41534-020-00288-9

Quantum Circuit Born machine

1. Sample from a variational wavefunction $|\psi(\theta)\rangle$ with probability given by the Born rule: $p_{\theta}(x) = |\langle x|\psi(\theta)\rangle|^2$

n dimensional binary strings map to 2ⁿ bins of the discretized dataset

- **2.** Only able to generate discrete PDFs (continuous in the limit #qubits $\rightarrow \infty$)
- 3. Training: metric (KL, MMD,...), trainable discriminator (quantum or classical NN), ...
- **4.** Maximum Mean Discrepancy: $MMD(P,Q) = \mathbb{E}_{X \sim P}[K(X,Y)] + \mathbb{E}_{X \sim Q}[K(X,Y)] 2\mathbb{E}_{X \sim P}[K(X,Y)]$, with K a gaussian kernel.
- 5. Pros: relativly easy to optimize, Cons: empircally less efficient than an adversarial approach

Variational Quantum Algorithms

Use Classical computation in order to keep the circuit shallow making use of an **optimization based/learning based** approach. The gradient is exactly computed with 2*d (d=#parameters) forward (sampling) passes.

Figure 1. Schematic diagram of a Variational Quantum Algorithm (VQA) [4]

[4] Variational quantum algorithms, https://arxiv.org/pdf/2012.09265.pdf

Muonic Force Carriers

- MFCs appear in different theoretical hypothesis, as a constituent of dark matter and could explain the anomalous magnetic dipole moment of the muon or the anomaly in the measurement of the proton radius.
- 2 use cases: a) muon fixed-target collision (FASER).
 b) muon interactions in the ATLAS⁵ calorimeter.
- We are interested to generates following features for the outgoing muon and MFC: energy (E), transversal momentum (pt) and pseudorapidity (η) .

[5] Galon, I, Kajamovitz, E et al. "Searching for muonic forces with the ATLAS detector". In: Phys. Rev. D 101, 011701 (2020)

One dimensional distribution outgoing muon's energy at 50 GeV

Comparison metric:

$$\mathrm{TV}(p,\pi) = \frac{1}{2} \sum_{x \in \Omega} |p(x) - \pi(x)|$$

backend	TV
simulator	0.055
noisy simulator	0.043
ibmq montreal	0.074
GMMD	0.028
easy GMMD	0.290

Perfect simulator
Noisy simulator
IBMQ Montreal
Classical GMMD of size
(15,128, 256,128,16,1)
Easy GMMD ~ QCBM in size

Born machine: multiples features⁶

Use multiples quantum registers

Local: learns the individual PDFs, time evolution of an Ising type Hamiltonian, conjectured to be difficult to simulate classicaly.

C: creates a corelated state between the first qubit in each register.

[6] Elton Yechao, Sonika Johri et al, "Generative Quantum Learning of Joint Probability Distribution Functions" In: arXiv 2109.06315

Can be mapped without swap gates on ibmq_mumbai

Results (125 GeV)

back-end	TV(E)	TV(pt)	$TV(\eta)$
simulator	0.055	0.05	0.052
noisy simulator	0.075	0.12	0.06
ibmq mumbai	0.078	0.097	0.13
GMMD	0.036	0.017	0.063
easy GMMD	0.360	0.040	0.110

Conditional Born machine

green: fixed gates

blue: data encoding gates

red: trainable gates

Data encoding: via data-parametrized rotations

Input: binning energy E (scaled between [0,1] and preprcoessed with arcsin())

Interpolation: train only on certain energy bins and the model should learn to predict in between.

Data re-uploading makes the quantum circuit more expressive as function of the data.

C-Born machine: results

back-end	TV(100)	TV(150)	TV(125)
simulator	0.033	0.016	0.033
noisy simulator	0.067	0.046	0.035
ibmq mumbai	0.15	0.13	0.094
GMMD	0.016	0.032	0.034

a) train: 100 GeV

b) train 150 GeV

c) test 125 GeV

Conclusion:

- 1. Use a quantum circuit Born machine to generate MFC events.
- 2. The Born machine is currently able to handle multivariate and conditional distributions and is competitive against GMMD of similar complexity.
- 3. Training on quantum hardware is important in order to assimilate the noise.
- 4. Futur work is devoted to scale the QCBM, in terms of number of qubits and register, and also to generate conditional multivariate distributions.

Thanks for your attention!

oriel.kiss@cern.ch sofia.vallecorsa@cern.ch

