

Accelerator Based- Neutron Capture Therapies

Daniel Santos Laboratoire de Physique Subatomique et de Cosmologie LPSC- Université Grenoble-Alpes ,CNRS/IN2P3

Grenøble

- LPSC: V. Ghetta, J. Giraud, J.F. Muraz, J. Marpeau, O. Guillaudin, N. Sauzet,R. Delorme, S. Chabod, D. Santos
- IAB (Inserm): L. Sancey, J-L. Coll
- ILL : U. Köster
- CHU Grenoble : C. Verry, J.Y. Giraud, I. Flandin

Journées R&T- IN2P3- Octobre 2021

BNCT - Boron Neutron Capture Therapy

→ Cell destruction by the products of the ¹¹B fragmentation (⁴He (1.24 MeV), ⁷Li (0.84 MeV)) after neutron capture by ¹⁰B

BNCT main steps :

- i) Vectorization of ¹⁰B on the tumor cells
- ii) Irradiation of tumor zone by an epithermal neutron field (0,1 eV 10 keV) (10⁹ n/cm²s)

iii) Fragmentation of 11 B after neutron capture (5-8 μ m)

Two ¹⁰B vectors are approved to be used in clinical treatments :

BPA and BSH getting ratio (tumor/healthy tissus) about 3.

BSH : *sodium borocaptate* BPA : para-borophenylalanine $C_9 H_{12}^{10} BNO_4$

 $Na_2 {}^{10}B_{12} H_{11} SH$

- Standard Radiotherapy Limitations :
 - Radio or Chemical Tumor resistance or diffuse *(ex. Glioblastomas, head&neck, ...)*
 - \geq Non local Tumors (ex: multiple metastasis) (brain, liver,...)

Réactions Nucléaires de base énergie (E < 2.5 MeV) comme source de neutrons Cibles : ⁷Li et ⁹Be

Réaction	Energie du faisceau incident (MEV)	Taux de production des neutrons (n/ <u>s.mA</u>)	Energie moyenne des neutrons (keV)	Energie maximale des neutrons (keV)
⁷ Li(p,n)	1,91	2,4 10 ¹⁰	34	67
⁷ Li(p,n)	2,5	8,9 10 ¹¹	326	786
⁹ Be(p,n)	4	10 ¹²	1060	2120
⁹ Be(<mark>d,n</mark>)	1,5	2,16 10 ¹¹	2010	5810
⁹ Be(<mark>d,n</mark>)	1,5			
¹³ C(<u>d,n</u>)	1,5	1,82 10 ¹¹	1080	6770

Neutron producing reactions

Kononov V et al. NIM. A (2006)

Fast neutrons (E>10 keV) are dangerous !

Need to keep neutrons, as far as possible, in the epithermal range (En < 10 keV) !!

ICRP, 1996. Conversion Coefficients for use in Radiological Protection against External Radiation. ICRP Publication 74. Ann. ICRP 26 (3-4). http://www.icrp.org/publication.asp?id=ICRP%20Publication%2074

A Compact Neutron Source Designed for the Hospital Environment

Neutron Therapeutics has developed an accelerator-based, in-hospital neutron source to replace the previously required nuclear reactor. This source is composed of a 2.6 MeV electrostatic proton accelerator and a rotating, solid lithium target for generating neutrons. Neutron Therapeutics will provide this neutron source as part of a comprehensive therapeutic treatment suite, that will combine all of the necessary components for BNCT treatment into a user-friendly package.

Product Features:

- 2.6 MeV Electrostatic Proton Accelerator
- Reliable operation at 30 mA for high patient throughput
- Cost-effective in-hospital design
- Rotating Solid Lithium Target
 - Excellent neutron beam quality
 - Solid target is safe and reliable
 - Excellent lifetime and automated service minimize cost of ownership

nuBeam

The nuBeam suite* is a complete BNCT solution, including beam-shaping assembly, patient positioning systems and ancillary equipment. Neutron Therapeutics can also provide fully vetted shielding bunker solutions custom designed for neutron radiation.

The nuBeam Suite

Installé à l'hôpital de Helsinki et en train de s'installer à Birmingham (UK)...

The World's First Compact Tandem Accelerator-Based Neutron Source Designed for a Hospital Environment

TAE Life Sciences is developing a stateof-the-art accelerator-based neutron source that is compact and engineered for optimum BNCT delivery. The neutron beam system (NBS) is part of TAE Life Sciences' Neutron Irradiation Suite, which promises to be a complete BNCT solution and include all of the required components including the beamshaping assembly, patient positioning system and ancillary equipment.

En train de se finir à Xiamen (Chine), prochainement au CNAO (Italie) et à Moscou (Russie)

Problèmes qui restent à résoudre...

- Les cibles ont du mal à tenir...(30-75 kW !!)
- La radioactivité résiduelle (⁷Be) de la cible ⁷Li
- La modération neutronique "optimale" pour assurer un champ épithermique (E < 10 keV)
- La caractérisation spectrale et en fluence du champ neutronique afin d'estimer la dose et comparer les traitements cliniques.

Thématiques developées dans le cadre du projet AB-NCT

- Ligne thermique (e-) de test
- Cible Be (test thermique et dépôt de Be)
- Cible Li-liq (maquette et mesures hydrodinamiques)
- Modérateurs "standards" et optimales
- Spectrométrie neutronique et Fantôme actif (Mimac-FastN)
- Microdosimétrie (traces en 3D de reculs nucléaires)
- Champ épithermique de référence à l'IRSN-Cadarache (thèse IRSN 10/21-9/24)

Ligne de test thermique (e⁻, 18 keV, 180 mA)

Caractéristiques :

- Source ECR d'électrons (plasma Argon)
- Puissance nominale 3 kW (5 kW max)
- Courant max 168 mA
- Coupelle de Faraday refroidie
- Optique faisceau (focalisation + steerer)
- Diagnostique faisceau non interceptif (BIF)
- Taille du faisceau 1 cm²
- Densité de puissance 3kW/cm²

Diagnostique faisceau par Beam Induced Fluorescence

(2 micro-caméras dans les plans X et Y)

Fluorescence faisceau dans le plan X

Profil et position du faisceau par analyse d'intensité d'image

Cible tournante Béryllium

Caractéristiques :

- Roue graphite tournante (30 cm, 3 Hz)
- Densité de puissance nominale 3 kW/cm²
- Echange thermique par radiation
- Refroidissement à eau de la chambre
- Mesure de température par pyromètres optiques

A réaliser :

- Dispositif de dépôt ⁹Be par Ion Beam Sputtering (IBS) (en cours- fin Novembre 21)
- Réalisation et caractérisation du dépôt ⁹Be (9μm) (2022)
- Mesure de la production neutronique (fin 2022)

Température de la cible (graphite) avec 2.9 kW/cm²

Source d'ions (Ar) pour sputtering afin de produire la cible Be (8-9 um)

Cible de Lithium liquide (V. Ghetta, J. Giraud, DS) (Brevet 2020)

La solution pour **découpl er la vitesse de défilement** du liquide devant le faisceau et **le débit** est de faire circuler le lithium sur une surface solide en rotation

Condenseurs Condenseurs Fjection du lithium en haut de la coque tournante sous forme de gouttes et retour vers le réservoir

Principe de la cible avec lithium

Travail sur maquette en eau pour définir les caractéristiques du rotor et optimiser le design de l'ensemble d'un point de vue hydraulique

Design du modérateur optimal adapté à la tumeur (Sébastien Chabod, LPSC (2020)

Design par optimisation topologique

Utilisation d'un algorithme d'optimisation topologique (cf. Nucl. Instr. Meth. A 931 (2019) 181) pour calculer automatiquement la forme d'un modérateur n- γ qui optimise le dépôt de dose dans le corps du patient.

Ex. d'application : traitement d'un glioblastome profond de 20 cm³. Modérateur D₂O. Objectif : 30 Gy-eq dans la tumeur. Doses limites L_i recommandées dans les tissus sains : 11 Gy-eq en tt pt du cerveau, 16.7 Gy-eq en tt pt du cuir, 30 Gy-eq en tt pt de l'os crânien.

Résultat de l'optimisation topologique : les doses D_i déposées dans chaque voxel i de la tête n'excèdent les limites recommandées L_i que ds une petite fraction du volume de la tête, <5 %. De plus, ces dépassements de doses restent faibles, max qq %.

Polyenergetic measurement with ⁹Be(d(1.45 MeV),n)

Angular distribution for an AB-BNCT nuclear reaction

Spectrum measured at **0 deg**

INFN LNL (Legnaro - Italy) 700 mbar He/CO₂ (5%)

Spectrum measured at 60 deg

M.E. Capoulat, N.Sauzet *et al.* « Neutron spectrometry of the ⁹Be(d(1.45 MeV),n)¹⁰B reaction for accelerator-based BNCT » NIM B, vol. 445, pp. 57-62, 2019

MIMAC-FastN Thermal neutron capture reaction products: ¹⁰B (n, alpha)⁷Li <u>"As an Active Phantom"</u>

3D alpha track 700 mbar (⁴He + 5 % CO₂) Produced by fragmentation of ¹¹B

Anode projection : track start

¹⁰B pill on the cathode (500 nm thick) N. Sauzet, D.S. et al, (2020)

MIMAC-FastN for characterizing neutron fields

New directional fast neutron spectrometer (8 keV – 200 MeV)

L'avenir de notre projet AB-NCT...

- Papier sur la ligne de test thermique (en montrant la densité de puissance de 3kW/cm²)
- Dépôt de Berylium sur la roue de graphite par sputtering en contrôlant les poussières de Be et la manipulation en général du Berylium (1-10/22)
- Validation par la caractérisation du champ neutronique sous faisceau (11-12/22)
- Fabrication de la coque du modérateur optimale pour la cible Be
- Test du modérateur et du fantôme actif avec l'eau lourde "prétée" par l'IRSN
- Convaincre qu'en France on peut avoir une installation AB-NCT optimisée pilote qui sera reproduite afin de pouvoir comparer les doses et traitements sur différents sites.

Spectre des neutrons produits sur la cible de ⁹Be à la sortie du modérateur simulé par Geant4 et MCNP (M. Tacca et al. LPSC,2015) La limite entre neutrons épithermiques et rapides de 10 keV est indiquée

