

Rencontre du groupe analyse de données

Observations of stellarmass black holes with LISA

Stellar-mass black hole binaries (SBHBs)

- Individual masses up to ${\cal O}(10^2) M_{\odot}$
- Seen by LIGO/VIRGO
- Could be seen by LISA during their early inspiral
- Different types of behaviour while in LISA band:
 Some will be clearly evolving in frequency (but
 - Some will be slowly evolving in frequency (but not monochromatic)
 - Some will start chirping at the higher end of LISA band

Scientific interest

- Probe low frequency modifications to GW:
 - Deviations from GR (time varying G, dipolar radiation...)
 - Environmental effects (peculiar acceleration, accretion into BHs...)
- Electromagnetic follow-up
- Discriminate between astrophysical formation models:
 - Eccentricity

I) Characterisation of parameter estimation for SBHBs with LISA

II) Constraints on modified gravity

III) Probes of the astrophysical environment

Exploration of parameter space

- Quasi-circular binaries, spinning but not precessing
- Start from fiducial system similar to GW150914
- Change few parameters at a time and assess the impact on PE
- Use PhenomD for the waveform, generate mock LISA data and perform full Bayesian analysis

40		
30		
36.2		
27.2		
8		
12.7215835397		
0.6		
0.4		
1.9		
$\pi/3$		
1.2		
0.7		
$\pi/6$		
250		
0.054		
4	10	
13.5	21.5	
	12.72 4 13.5	

Parameter estimation (intrinsic parameters)

 $\mathcal{M}_{c} = \left(\frac{m_{1}^{3}m_{2}^{3}}{m_{1} + m_{2}}\right)^{1/5} \qquad \eta = \frac{m_{1}m_{2}}{(m_{1} + m_{2})^{2}} \qquad \chi_{+,-} = \frac{m_{1}\chi_{1} \pm m_{2}\chi_{2}}{m_{1} + m_{2}}$

Discussion of the correlations

 $f_0 = 12.7 \text{ mHz}$ $f_{4years} = 16.5 \text{ mHz}$

- Toy model: fix all parameters but masses
- Taylor expand the phase:

$$\Psi(f) \simeq \Psi(f_0) + \frac{d\Psi}{df}|_{f_0}(f - f_0) + \frac{1}{2}\frac{d^2\Psi}{df^2}|_{f_0}(f - f_0)^2$$

Set:

$$\frac{\mathrm{d}^2\Psi(\mathcal{M}_c,\eta)}{\mathrm{d}f^2}\mid_{f_0} = \frac{\mathrm{d}^2\Psi(\mathcal{M}_{c,inj},\eta_{inj})}{\mathrm{d}f^2}\mid_{f_0}$$

Discussion of the correlations

Discussion of the correlations

- Define $\delta \Psi = \max_{I} |\Psi_{d}(f) \Psi_{h}(f)|$
- I is the frequency range within LISA band spanned over $T_{\rm obs}$
- For each value of η find \mathcal{M}_c that minimises $\delta\Psi$

Extent of the correlations

• Define
$$\chi_{PN} = \frac{1}{113}(94\chi_s + 19\frac{q-1}{q+1}\chi_a)$$

• The 1.5PN coefficient reads $(-16\pi + rac{113}{3}\chi_{PN})\eta^{-3/5}$

Best measured spin combination

 $\chi_{+,-} = \frac{m_1\chi_1 \pm m_2\chi_2}{m_1 + m_2}$

Extent of the correlations

Extent of the correlations

 When observing at low frequencies, terms above 1.5PN are note relevant

• Shifts in χ_{PN} can be compensated by changes in η such that $(-16\pi + \frac{113}{3}\chi_{PN})\eta^{-3/5}$ is kept constant

 Parameter estimation depends crucially on the chirp of the system!

¹³ Measurement of parameters

- \mathcal{M}_c measured within $10^{-2}\%$
- For chirping systems:
 - individual masses measured within 20%
 - χ_{PN} measured within 0.01, χ_+ within 0.1
- Error on t_c improves from 1 day to 30 s for chirping systems
- Sky location typically measured within $0.4~{
 m deg}^2$
- Distance within $40 60\% \longrightarrow \mathcal{M}_{c,s}$ within 1%

Toubiana, Marsat, Babak, Baker and Dal Canton arXiv:2007.08544

Modifications to GR

GW computations are lengthy and difficult

 Few full computations and simulations in modified gravity theories

 Phenomenological approach (parameterised post Einsteinian framework):

$$h = h_{GR} e^{i\beta u^b} \qquad u = \pi \mathcal{M}_c f$$

Modifications to GR

• Dipolar radiation: $\dot{E} = \dot{E}_{GR}(1 + B_{BH}v^{-2})$

$$\Rightarrow \begin{array}{c} \beta \propto B_{\rm BH} \\ b = -7/3 \end{array}$$

• Modified dispersion relation: $E_g^2 = p^2 c^2 + m_g^2 c^4$

$$\Rightarrow \begin{array}{l} \beta \propto \mathcal{M}_c D_L m_g^2 \\ b = -1 \end{array}$$

¹⁶ Constraints on modifications

	$B_{ m BH}$	
	LISA-only	LISA+Earth
System $1(t_c = 8.3 \text{ years})$	$< 1.1 \ 10^{-7}$	$< 1.1 \ 10^{-7}$
System $1(t_c = 4.0 \text{ years})$	$< 9.2 \ 10^{-9}$	$< 3.2 \ 10^{-9}$
System $1(t_c = 2.5 \text{ years})$	$< 6.8 \ 10^{-8}$	$< 7.2 \ 10^{-9}$
System 2	< 1.5 10 ⁻⁸	< 4.6 10 ⁻⁹
System 3	< 1.9 10 ⁻⁷	< 2.5 10 ⁻⁸
Current constraints	$< 4 \times 10^{-2}$	

	$m_g ({ m eV})$	
	LISA-only	LISA+Earth
System $1(t_c = 8.3 \text{ years})$	< 9.3 10 ⁻²³	< 2.5 10 ⁻²³
System $1(t_c = 4.0 \text{ years})$	< 2.0 10 ⁻²³	< 1.5 10 ⁻²³
System $1(t_c = 2.5 \text{ years})$	< 3.1 10 ⁻²³	< 2.5 10 ⁻²³
System 2	$< 1.2 \ 10^{-23}$	$< 1.2 \ 10^{-23}$
System 3	< 3.5 10 ⁻²³	< 2.0 10 ⁻²³
Current constraints	< 1.8	$\times 10^{-24}$

LISA+Earth restrict t_c , "fake multiband"

Toubiana, Marsat, Babak, Baker and Barausse arXiv:2004.03626

Probing the astrophysical environment

Constant acceleration

 $\epsilon = 4.3 \times 10^5 \frac{M_{\rm MBH}}{10^8 M_{\odot}} \left(\frac{1 \text{ pc}}{a}\right)^2$

$$\beta \propto \epsilon$$

 $b = -13/3$

17

Credits: Stanislav Babak

Perturbative effects

$$h = h_{\text{vacuum}} e^{i\beta u^b}$$
$$u = \pi \mathcal{M}_c f$$

Accretion onto the binary components

Dynamical friction

 $\rho_0 = 10^{-10} \text{g.cm}^{-3}$

 $\dot{m}_i = f_{\rm Edd} \dot{m}_{\rm Edd}$

$$eta \propto f_{
m Edd}$$

 $b = -13/3$

Credits: Franziska Schmidt

$$eta \propto
ho$$

 $b = -16/$

Credits: Caltech/R. Hurt (IPAC)

- Gas density for $ho\gtrsim 10^{-12}{
 m g.cm^{-3}}$
- Acceleration for $a \lesssim 0.4~{
 m pc}~M_{
 m MBH} = 10^8~M_{\odot}$

Credits: Caltech/R. Hurt (IPAC)

Non perturbative effects for ¹⁹ GW190521

- Doppler shift in frequency due to orbital motion $~~a \lesssim 0.2~{
 m pc}$
- Strong modulation:
 chirping/anti-chirping
- Non-trivial modification of GW signal

Non perturbative effects for ²⁰ GW190521

- Lense for SMBH:
 - Periodic
 - two images, time shifted,
 different magnification
 - strongly depends on the geometry

Electromagnetic counterparts

Caputo et al. arXiv:2001.03620

Sky localisation of GW171917 by the LIGO/VIRGO collaboration

$$T_{\rm obs} \simeq 8 \times 10^{-2} \left(\frac{1}{f_{\rm Edd}}\right)^2 \left(\frac{M_{\odot}}{M_{\rm tot}}\right)^2 \left(\frac{D_L}{Mpc}\right)^4 \text{ hours}$$

 $\mathcal{O}(1h - 1 \text{ day})$ for $M_{\text{tot}} = \mathcal{O}(10^2 - 10^3) M_{\odot}$ $f_{\text{Edd}} = 1$

Conclusions

- Observation of SBHBs with LISA would allow for a lot of interesting science (population study, tests of GR, probe astrophysical environment, early warnings for EM telescope and ground based detectors...)
- PE for SBHBs depends crucially on the chirp, but always very precise measurement of chirp mass and sky location
- Crucial to disentangle between modifications to GR and environmental effects
- First step towards multiband study
- Need to figure out the detectability

Thank you for your attention!

$$f_{\rm Edd} = 5$$

 $ho =
ho_0$
 $a = 0.4 \ {
m pc}$
 $M_{\rm MBH} = 10^8 \ M_{\odot}$

 $\varphi_{-4} = \varphi_{\text{accretion}} + \varphi_{\text{acceleration}}$