

Abstract Representations
for LQCD

Université de Versailles St
Quentin/INRIA

D. Barthou

Kickoff PetaQCD

LQCD ETMC Application

Current ETMC code
• C code, hand optimized for BG and SSE,
• Hopping_Matrix function represents hot spot,
• complex data structures, 4D torus lattice, stencil

computation

Kickoff PetaQCD

LQCD ETMC Application

Kickoff PetaQCD

LQCD ETMC Application

Current ETMC code
• C code, hand optimized for BG and SSE,
• Hopping_Matrix function represents hot spot,
• complex data structures, 4D torus lattice, stencil

computation

Optimizations performed in projects PARA
• Very different from one architecture to the other

 SIMDization, tiling, loop spliting, unroll, ...
 Most of it by hand, limited to Hopping_Matrix

• Performance limited by mem. bandwidth (IA64, Cell)
• Still lacking 1 or 2 orders of magnitude in perf. for

Petaflop...

Kickoff PetaQCD

Improving performance?

Necessity to improve computation/memory access
ratio, or bandwidth

• Change architecture
 Change bandwidth (wait for André's talk)
 Need to adapt code (SIMD, tile sizes, unrolling

factors, ...)
• Improve data reuse (reduces memory accesses)

 Existing reuse of Hopping_Matrix
 Some data structure reused many times without

modification between calls to HM (gauge links)
 Same data modified multiple times accross calls to

HM (tiling time). Benefits ?

Kickoff PetaQCD

Why a higher abstraction?

One representation for
all architectures
 Code generators

needed

Widen space of possible
transformations
 Richer semantics
 Control/data structures

can be adapted to
architecture

1) maths/physics
• no schedule, not

executable

2) dataflow or domain-
specific language

• schedule not fully
specified, parallelism
not explicit

3) source code
• full schedule, data

structure optimized
• different levels (C,

asm, binary at
runtime,...)

Kickoff PetaQCD

Some higher abstractions

1) maths/physics
• SPIRAL, Fortress with efforts

2) dataflow or domain-specific language
• TAO (apeNEXT),
• sigma-SPL (spiral),
• Fortress+libraries (Sun),
• Dataflow rep. (Systems of Affine recurrent equations

for instance)

Kickoff PetaQCD

Tao Language

Toolkit for Advanced Optimization

Features
• Domain specific language, based on libraries for large

scale optimization problems
• Linear solvers, manipulation of matrices/vectors
• Parallelism is inside libraries
• Possible to mix C code with library calls

Kickoff PetaQCD

Fortress

Features
• Write code as maths, for scientific computing

 type inference for guessing operators described by a
blank

• User-defined iterators
 iterators subdivide a space with sub-iterators
 implicitely parallel (sequential must be specified)
 architecture specific

• Transactional memory, atomic instruction blocks
• No compiler (not yet), interpreted. OpenSource

 JVM

Kickoff PetaQCD

Fortress: SUN example

Kickoff PetaQCD

Fortress: SUN example

Kickoff PetaQCD

Spiral

Features
• Domain-specific language for DFTs, DCTs, linear

algebra and other signal processing functions
• One-line mathematical formula

 matrix product, tensor product, direct sum
• Based on divide & conquer breakdown rules

 decompose a formula into simpler ones
 multiple breakdown rules for different

decomposition algorithms/variants
• From formula to optimized code

 code generation for Cell, GPU, BG, multicores...
 not yet inter-node parallelism

Kickoff PetaQCD

Spiral code generation

• Based on search
 different formulations
 code versions

• Many back ends
 BG, Cell, GPU,

multicores
• High level of performance

Kickoff PetaQCD

Spiral: breakdown rules

Kickoff PetaQCD

Dataflow representations

Dataflow only represents flow of values
Features
• Multiple schedules possible (seq or //)
• Different languages/formalizations

 Lustre, StreamIT, Khan networks,
 or just systems of affine recurrence equations

• Choice of efficient data structures and parallelism can
be derived from initial form

• Scheduling/transformations/code generation for
polyhedral model applies when control and access
patterns are regular

Kickoff PetaQCD

Conclusions

• Library based representation (TAO)
 Wraps computation inside functions, compact

representation.
• Fortress:

 No compiler, just facilitating code representation.
Optimistic view: makes a formula executable.

• Spiral:
 Need to simplify LQCD computation for Spiral,

efficient code generation
• Dataflow representation:

 Focusing on dependences, independent slices, no
impact on the writing of the operations. Possible to
detect vector operations/SIMD.

• Others to be explored / used ?

