Status of the ND ECAL.

CALICE Satellite Physics discussion

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Eldwan Brianne DESY **1**4th **October 2020**

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Current status of the ND-GAr design. What is that thing?

- Goal of the ND ECAL: NC background ID (neutral pions)
- The design of the ND-GAr evolved quite a bit from the last few months (especially the magnet)
 - Initial design: Helmholtz-coils
 - ECAL was outside of the pressure vessel entirely
 - Quite large surface to cover: ~ 7 m in length for the barrel, ~3 m radius of the endcaps, 300 t total weight
 - Revised design: Solenoid magnet with partial return yoke
 - Change in the ECAL design: Barrel outside the PV, Endcap inside
 - Much smaller: ~5 m length, 2.7 m radius endcaps, 200t total weight
 - Space for barrel limited to around 76 cm (practically depends on barrel geometry)

Current layer design. So far on optimisation

- Optimisation of the ECAL has been ongoing since some time already
 - Starting with Lorenz's master (<u>https://arxiv.org/pdf/1810.03677</u>) ${\color{black}\bullet}$
 - Ongoing with implementation in the ND Software framework
- Current design \bullet
 - 2 mm Cu absorber with 5 mm Sc (60 layers) \bullet
 - Using a mix of tiles (2.5x2.5 cm²) and strips (4 cm width)
 - 8 tiled layers in the front / 52 stripped in the back
- Still place of improvement in the optimisation \bullet
 - How to place tiled/stripped layers?
 - Absorber material / thickness (optimise Eres for low photon energies) •
 - Particle identification
 - Strip width
 - Upstream/Downstream
 - Neutrons (ToF)

Current issues.

Open questions

- Main current roadblock
 - An engineering design of the ECAL is needed now \bullet
 - Design of services/dead zones and impact on performance
- Input from the physics side
 - Have been in talks with the BSM group and few others peoples ullet
 - Would be great to have more input from the physics side to further guide the optimisation
- Timing \bullet
 - What type of plastic? Fiberless? What time resolution needed/ \bullet achievable?
- Proof of concept \bullet
 - Need for prototyping: layers, strips, daq... (ideally a full prototype of lacksquarefew layers)

