DUNE and DUNE-Prism concept.

FLC Long talk

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Eldwan Brianne DESY 07th September 2020

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Outline.

- 1. The DUNE experiment
- 2. The Near Detector concept
- 3. The ND-Gar detector
- 4. The DUNE Prism concept
- 5. Outlook and Conclusion

https://indico.desy.de/indico/event/23548/contribution/2/material/slides/0.pdf

The DUNE Experiment. **Deep Underground Neutrino Experiment**

- The next generation neutrino experiment
 - Long Baseline Neutrino **1300 km** ullet
 - Wide-band neutrino beam (GeV range, MW ulletbeam)
- Detectors \bullet
 - Near detector complex at 575 m from \bullet neutrino source
 - **Far Detector** made of 4 x 10 kt fiducial \bullet mass LAr detector

The DUNE Experiment. **Deep Underground Neutrino Experiment**

- Goals: \bullet
 - **Neutrino oscillations** measure v_µ disappearance and v_e and v_{τ} appearance (both FHC and RHC)
 - Measure δ_{cp} over 75% of the phase space \bullet with a precision up to 5σ , determine mass hierarchy and precise measurement of the mixing angles (θ_{23} octant)
 - Beyond the SM physics: neutrino tridents, DM, sterile neutrinos...
- Other searches: neutrino supernovae, proton \bullet decay...

How to measure neutrino oscillations? Ups and downs of neutrinos

- Want to measure oscillation probability \bullet
- However, detector effects in need for unfolding / not so \bullet easy to cancel systematics
- In reality, this is not easy, need to understand \bullet
 - The neutrino flux
 - **Cross-section ratios**
 - **Extrapolation near to far**
 - **Detector effects (near and far)**
 - **Relation true to reco neutrino energy**

Eldwan Brianne | FLC Long talk | 07/09/2020

$$P_{\nu_{\mu} \to \nu_{e}}(E_{\nu}) = \frac{\phi_{\nu_{e}}^{far}(E_{\nu})}{\phi_{\nu_{\mu}}^{far,no-osc}(E_{\nu})} = \frac{\phi_{\nu_{e}}^{far}(E_{\nu})}{\phi_{\nu_{\mu}}^{near}(E_{\nu}) * F_{far/near}(E_{\nu})}$$

$$\frac{dN_{\nu}^{det}}{dE_{rec}} = \int \phi_{\nu}^{det}(E_{\nu}) * \sigma_{\nu}^{target}(E_{\nu}) * T_{\nu_{\mu}}^{det}(E_{\nu}, E_{rec}) dE_{\nu}$$

$$\frac{dN_{\nu_e}^{far}}{dE_{\nu}} \left/ \frac{dN_{\nu_{\mu}}^{near}}{dE_{\nu}} = P_{\nu_{\mu} \to \nu_e}(E_{\nu}) * \frac{\sigma_{\nu_e}^{Ar}(E_{\nu})}{\sigma_{\nu_{\mu}}^{Ar}(E_{\nu})} * \frac{F_{far/near}(E_{\nu})}{\sigma_{\nu_{\mu}}^{Ar}(E_{\nu})} \right)$$

$$\frac{dN_{\nu_e}^{near}}{dE_{\nu}} \left/ \frac{dN_{\nu_{\mu}}^{near}}{dE_{\nu}} = \frac{\sigma_{\nu_e}^{Ar}(E_{\nu})}{\sigma_{\nu_{\mu}}^{Ar}(E_{\nu})} * \frac{\phi_{\nu_e}^{near}(E_{\nu})}{\phi_{\nu_{\mu}}^{near}(E_{\nu})} \right|$$

Example: Impact of cross-section measurement. Effect on CP sensitivity

- Cross-sections are directly used to reconstruct the neutrino \bullet energy
 - Final state interactions (FSI) and nuclear effects within ulletthe nuclei can make different interaction channels with the same topology

What can happen

Example: Impact of cross-section measurement. Effect on CP sensitivity

- Cross-sections are directly used to reconstruct the neutrino \bullet energy
 - Final state interactions (FSI) and nuclear effects within \bullet the nuclei can make different interaction channels with the same topology
- Cross-sections systematics are often the **dominant** \bullet contribution in the error on neutrino oscillations
 - Sensitive to the generator model (GENIE) \bullet
 - **Different** but plausible model⁻
- Strong possibility of other viable models **more model** \bullet bias will need to be included reducing the sensitivity further

The DUNE ND Complex. A crucial part of DUNE

ND-LAr \bullet

Highly modular Liquid Argon Time Projection \bullet Chamber with pixelated readout (50 t), similar to FD, primary target

ND-GAr \bullet

High-pressure gas Argon TPC (1 t) \bullet surrounded by a high performance ECAL, a magnet and a muon system, muon spectrometer and constrain nuclear modelling on Argon

SAND \bullet

- Highly granular plastic target (8 t) surrounded lacksquareby trackers and ECAL inside a magnet, onaxis beam spectrum monitor
- ND-LAr and ND-GAr can move off-axis **DUNE-Prism** concept

On-axis

DUNE-Prism

ND Requirements. The goals of the ND

- Predict neutrino flux at the FD \bullet
 - ND must be able to **predict observable** at the FD \bullet
- Transfer measurements to the FD \bullet
 - ND measurements must be **transferable** to the FD to minimise systematics
- Constrain the neutrino cross-section model \bullet
 - **Reduces systematics** of the FD response to neutrino energy/flavor \bullet
- Measure the neutrino flux \bullet
 - Constrain the **flux modelling** \bullet
- Obtain data with different neutrino fluxes (**DUNE-Prism**) \bullet
 - ND must be able to verify the **robustness of model** predictions with different fluxes
- Monitor the neutrino beam \bullet
 - Detect **variations** in the beam flux \bullet
- Operate in a **high rate** environment

The ND-GAr detector. The CDR baseline

- **1 ton fiducial mass** Gas Argon TPC at 10 bar inside a ulletpressure vessel
- High-performance ECAL using copper as absorber and \bullet scintillator tiles/strips with SiPM readout
- A super-conducting **magnet** and a complementary **muon** \bullet system
- Acts as a **spectrometer** for muons exiting the ND-LAr
- **Lower** target energy **threshold** (~MeV compared to ~30 \bullet MeV)
 - improve understanding of nuclear models to reduce systematics
- Key for some **channels** that are **hard to distinguish** in the ulletND/FD-LAr, such as multi-pi final states

The ND-GAr detector. Fast evolution of the concept

- Engineering design of the pressure vessel is evolving fast \bullet
 - Understand **mechanical constrains** due to pressure, welding etc...
- Barrel thickness designed to be $\sim 0.5 X_0$ ($\sim 4.4 \text{ cm Al}$) \bullet
 - Due to mechanical constrains me pressure vessel head \bullet need to be ~1 X_0 (if using AI)
 - Stainless steel being investigated www.would.reduce \bullet overall ND-GAr length by ~ 2m with a thickness of 25 mm (~1.4 X₀)
- This has an impact on the overall ND-GAr design especially \bullet on the ECAL
 - ECAL endcaps need to be **inside** the pressure vessel \bullet

Eldwan Brianne | FLC Long talk | 07/09/2020

The ND-GAr detector. Fast evolution of the concept

- Engineering design of the ND-GAr magnet has changed a lot in the past few months
 - Allowance in the overall detector radial size reduced \bullet
 - Impact of the stray B-field on SAND (forces on the SAND) lacksquareyoke)
 - Cost \bullet
- Original design using 3 to 5 Helmholtz-coils \bullet
- New design investigated using a **solenoid with a partial** return yoke (SPY)
 - Reduces **material** in front of the ND-GAr
 - Reduces **overall size** in diameter \bullet
 - Reduces stored energy, stray field and cost
 - Can include a **muon system** inside the yoke

The ND-GAr detector. Fast evolution of the concept

- The full ND-GAr will **not** be available on day-one
- Needs to be able to measure muons exiting from the ND-LAr
- Needs to meet the DUNE **physics requirements** (3+ years running)
 - 3σ CP violation sensitivity at $\delta = \pi/2$ \bullet
 - Mass-ordering determination
- Alternatives are being investigated
 - Temporary muon spectrometer system (TMS) using lacksquaremagnetised steel and scintillator planes
 - ND-GAr with the **SPY** magnet system + 5 scintillator \bullet tracker planes (Minerva-like)

The ND-GAr detector. **Integration of Pandora**

- Software framework is evolving a lot also
- Full simulation and reconstruction chain being harmonised within the ND groups
 - Agreements on **generator** (GENIE) and **simulation** wrapper (edep-sim)
- **PandoraPFA** algorithms are used to reconstruct the neutrino event in the FD
 - Why not also using it for the **ND**? \bullet
- ND-LAr and ND-GAr groups are interested in implementing Pandora into their reconstruction chain
 - ND-GAr PandoraPFA is now **implemented** due to large \bullet similarities with ILD (using for now LCContent algorithms)
 - Pandora group is interested in providing support into the implementation of PandoraPFA for the ND complex

MSG
legin processing the 1st record. run: 1 subRun: 0 event: 1 at 09-Jul-2020 13:11:2
MSG-i PandoraInterface - produce: PandoraInterface:pandora@BeginModule 09-Jul
MSG
Running Algorithm: Alg0001, CaloHitPreparation
Running Algorithm: AlgOOO2, EventPrenaration
Running Algorithm: Algoool, ClusteringParent
Pupping Algorithm: Algoods, ConeClustering
Pupping Algorithm: Algo004, Conectosterting
Pupping Algorithm, Algood, LoopingTeacks
> Running Algorithm: Algooo, LoopingTracks
> Dupping Algorithm: Algood, Showardin Narsing
> Running Algorithm: Algoods, Snowermipmerging
> Running Algorithm: Algoody, Snowermipmerging2
> Running Algorithm: Algooid, Backscatterediracks
> Running Algorithm: Algouil, BackscatteredTracks2
> Running Algorithm: Alg0012, ShowerMipMerging3
> Running Algorithm: Alg0013, ShowerMipMerging4
> Running Algorithm: Alg0014, ProximityBasedMerging
> Running Algorithm: Alg0015, TrackClusterAssociation
> Running Algorithm: Alg0016, ConeBasedMerging
> Running Algorithm: Alg0017, TrackClusterAssociation
> Running Algorithm: Alg0018, MipPhotonSeparation
> Running Algorithm: Alg0019, TrackClusterAssociation
> Running Algorithm: Alg0020, SoftClusterMerging

14

The DUNE Prism concept. **Motivation**

- Neutrino energy depends on the interaction model
- Constraining neutrino interactions uncertainty is difficult due to the lack of a complete model (**unknown** biases that can be difficult to estimate)
- **DUNE** neutrino beam
 - Peak energy decrease as function of the angle relative to \bullet the beam - generally used in **narrow-band** experiment (T2K, NOvA)
- **DUNE-Prism** concept exploits this
 - Measure various off-axis positions
 - Provide an additional degree of freedom to constrain systematics uncertainties
- Allow for data-driven determination of the relation Etrue -E_{reco} (less sensitive to neutrino interaction model)

The DUNE Prism concept. Flux matching

- Off-axis positions constitute a **set of fluxes** peaking at different energies across the DUNE neutrino energies
- Using these fluxes, one can mock-up a nearly Gaussian spectra using linear combination of the energy spectra
- Going even further, one can directly **construct** the oscillated energy spectrum at the FD for any oscillation parameter
 - This minimises the ND/FD flux differences and associated systematics
 - Gives a set of coefficients that can be applied to any ND observable to get the **FD prediction**
 - In the limit that the model flux is perfect, this \bullet gives a **nearly model independent** measurement

Conclusion. A lot of progress

- The DUNE experiment is the next generation neutrino experiment that will \bullet probe the neutrino sector to great details
- The DUNE Near Detector complex is crucial to achieve DUNE's physics goals
- The ND-GAr is a necessary complementary detector to the ND-LAr
- Its conceptual design is evolving fast
- The ND group is going toward a unified software framework
- The DUNE-Prism concept is a fundamental part of the DUNE ND program, \bullet providing datasets that will enable us to understand to great details neutrino oscillations
- The DUNE ND CDR is currently under review and hopefully will be soon \bullet available publicly

