Probability Generating Functions for interaction counting

Vladik Balagura LLR, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris

21 Oct 2020

Response to N interactions

Let p(N) = luminometer spectrum - probability to have luminometer value N (eg. N hits).

Example: solid curve - response to 1 interaction.

Response to N interactions = N convolutions of p(N) with itself.

Its Fourier transform: $(p^F)^N$, where p^F - Fourier transform of p(N).

Response to μ Poisson-distributed interactions

 \mathcal{P} oisson probability $\mathcal{P}(n)=\frac{\mu^n}{n!}e^{-\mu}$, so Fourier transform of response to μ Poisson-distributed interactions:

$$\mathcal{P}(p)^F = \sum_{n} \frac{(p^F)^n \mu^n}{n!} e^{-\mu} = e^{-\mu(p^F - 1)}$$

Example for $\mu=5$. Note δ -function at zero-bin, $\mathcal{P}(0)=e^{-\mu}$. I've realized this formalism ~ 15 years ago when fitting SiPM spectra. Published as Appendix in NIM A 564 (2006) p.590 ("Study of scintillator strip with wavelength shifting fiber and silicon photomultiplier").

Equally well can be applied to any luminometer.

4□ > 4□ > 4≡ > 4≡ > 900

V. Balagura

Probability Generating Functions (PGF)

$$G_p(z) = \overline{z^N} = E_p[z^N] = \sum_{N=0}^{M-1} p(N) \cdot z^N$$

Fourier:
$$p^F(K) = \sum_{N=0}^{M-1} p(N)e^{-2\pi i \cdot N \cdot \frac{K}{M}}$$
, inverse: $p(N) = \frac{1}{M} \sum_{K=0}^{M-1} p^F(K)e^{2\pi i \cdot K \cdot \frac{K}{M}}$

Fourier transform is a special case of PGF when $z = e^{2\pi i \ K/M}$. Like Fourier transforms:

generating function of discrete convolution of p(N), q(N) = p * q is the product $G(p) \cdot G(q)$:

$$\sum_{N=0}^{M-1} p(N) \cdot z^{N} \times \sum_{K=0}^{M-1} q(K) \cdot z^{K} = \sum_{L=0}^{M-1} \left(\sum_{N,M,N+M=L} p(N) q(K) \right) \cdot z^{L} = \sum_{L=0}^{M-1} (p*q) (L) \cdot z^{L}.$$

Therefore, PGF of response to μ Poisson-distributed interactions:

$$G_{\mathcal{P}(p)}(z) = \sum_{n} \frac{(G_p)^n \mu^n}{n!} e^{-\mu} = e^{-\mu [G_p(z) - 1]}$$

So, $G_{\mathcal{P}(p)}(z) = e^{-\mu[G_p(z)-1]}$. Can this be used in practice?

Let's denote incoming per-event detector measurements by $N_1, N_2, N_3 \ldots$. Take any (even complex) number z and calculate average z^{N_j}

$$G_{\mathcal{P}(p)}(z) = \overline{z^{N_i}} = \frac{\sum_i z^{N_i}}{N_{\text{ev.}}},$$

where N_{ev} – number of events. Then,

$$\log(G_{\mathcal{P}(p)}(z)) = -\mu \log(G_p(z) - 1) \propto \mu \propto \text{Luminosity}$$

New method of luminosity measurement in addition to known "average" and "logZero":

"Average", "logZero" and PGF algorithms

	Accumulate	Lumi
Average	$N_1 + N_2 + \dots$	$\propto \frac{\sum N_i}{n}$
LogZero	$1+0+\dots$	$\propto -\log \frac{\sum (N_i = 0)}{n}$
G(z)	$z^{N_1}+z^{N_2}+\ldots$	$\propto \log(\frac{\sum z^{N_i}}{n})$

V. Balagura

"Average" and "logZero" are special cases of PGF method!

Take $z = 1 + \epsilon$ and the limit $\epsilon \to 0$:

$$\lim_{\epsilon \to 0} G(1+\epsilon) = \lim_{\epsilon \to 0} \log \left(\frac{\sum_{i} (1+\epsilon)^{N_i}}{N_{\text{ev.}}} \right) = \lim_{\epsilon \to 0} \log \left(1 + \sum_{i} \frac{\epsilon N_i}{N_{\text{ev.}}} \right) = \epsilon \overline{N}.$$

So,

Luminosity
$$\propto \overline{N} = \frac{1}{\epsilon} \lim_{\epsilon \to 0} G(1 + \epsilon).$$

 $z=\epsilon o 0$ reproduces "logZero": $\epsilon^0=1,\,\epsilon^N_i o 0$ for $N_i>0$, so only zero-bin $N_i=0$ matters and

$$-\lim_{\epsilon \to 0} \textit{G}(\epsilon) = -\lim_{\epsilon \to 0} \log \left(\frac{\sum_{j} \epsilon^{\textit{N}_{j}}}{\textit{N}_{\textit{ev}.}} \right) = -\log \left(\frac{\textit{N}_{\textit{ev}.}^{\textit{N}=0}}{\textit{N}_{\textit{ev}.}} \right) \propto \text{Luminosity}.$$

Which method is better? "Average"?

(+) Simple and linear

(-) Relies on

- long-term stability of calibration constant and
- linearity in full range (bias from high pile-up evs. or saturation: N triggered ≤ total N chan.)

Note, bias from badly reconstructed "busy" events is enhanced proportionally to N_i :

$$\overline{N} = rac{\sum_{ev.} N_i}{N_{ev.}} = \sum_{N} (p_N \cdot N)$$

(many tracks in busy ev. can be biased at once).

→ To be safe, long time ago in LHCb we've decided to use "logZero" instead.

7/11

"LogZero" method, $\mu = -\log(\mathcal{P}_0)$

- (+) Insensitive to reconstruction in busy events: all classified as non-empty
- (-) Does not work at high μ : $\mathcal{P}_0 = e^{-\mu}$ too small

- "LogZero" worked fine at LHCb in Runs 1-2 $(\mu \approx$ 1).
- But with $\mu \sim$ 5 10 in Runs 3-4 in large acceptance luminometers (eg. Velo):

$$\begin{array}{c|c} \mu & \mathcal{P}(0) \\ \hline 5 & 7 \cdot 10^{-3} \\ 10 & 5 \cdot 10^{-5} \end{array}$$

– too small (and too sensitive to $\boldsymbol{\mu}$ variations).

Let's use PGF!

Let's take 0 < z < 1: then in

$$G(z) = \log \left(\frac{\sum_{ev.} z^{N_i}}{N_{ev.}} \right) \propto \text{Luminosity}$$

higher N-bins exponentially vanish as z^{N_i} . This automatically suppresses bias in "busy" events! z can be optimized for a given N-spectrum. Eq.

$$z = 2^{-1/N_0} = \sqrt[N_0]{0.5}$$

suppresses N_0 -th bin by $z_0^N=2^{-1}$, $2N_0$ -th by 2^{-2} etc., and N_0 can be tuned.

This is a way to go for LHCb in Runs 3, 4!

Example from van der Meer scan with varying μ

	method	line	
	"average"	upper: "avr." vs. "log0"	$z \rightarrow 1$
Vertical	PGF	intermediate	0 < z < 1
	"LogZero"	botoom at 45°	$z \rightarrow 0$
Horizontal	"logZero"		

Good linearity everywhere as expected.

To have continuous transition "logZero" \to PGF \to "average", log $G(z) \propto L$ is normalized by $-(1-z)^{-1}$.

10/11

Summary

- New unbiased method of interaction counting is proposed. Backed by sound math: PGF.
- Will be deployed at LHCb for next Runs, can be used in other experiments, eg. to suppress high pile-up events in ATLAS, CMS.
- \bullet z-variation in the range 0 < z < 1 performs continuous transition between "logZero" and "average". New degree of freedom for
 - optimizing luminometers,
 - cross-checking results using the same data.
- Can be used universally with any luminometer, discrete $(G(z) = \sum_N p_N z^N)$ or continuous $(\int p(x)z^X dx)$.
- Can also be applied for measuring other "extensive" (or additive) variables (aka luminosity) via experimental spectra.
- Exponential response $e^{\alpha N}$ (instead of αN) can be implemented already at hardware level. Then, instead of \overline{N} , one determines $\log(\overline{e^{\alpha N}})$.
- Method works for any z. There might be specific cases when eg. negative, z > 1 or complex z might be useful.