Pour vous authentifier, privilégiez eduGAIN / To authenticate, prefer eduGAINeu

Thèses

Suheyla Bilgen "Pression dynamique dans les accélérateurs de particules : Mesures expérimentales et simulation dans le grand collisionneur de hadrons" (Physique des accélérateurs)

Europe/Paris
200/0-Auditorium - Auditorium P. Lehmann (IJCLab)

200/0-Auditorium - Auditorium P. Lehmann

IJCLab

250
Montrer la salle sur la carte
Description

Lien de connexion / Link :

https://ijclab.zoom.us/j/91408772060?pwd=MUlGS3FDMlF4Z2p2bjdnQ2U0NVp5UT09

Merci de laisser fermés camera et micro de votre ordinateur pendant la soutenance.
Please keep your camera and microphone switched off throughout the defense. 

Résumé :

L’obtention de très faible pression (UHV) est une condition essentielle pour les accélérateurs de particules de haute énergie et de hautes performances. Par conséquent, la compréhension de l'évolution de la pression dynamique pendant le fonctionnement des accélérateurs est fondamentale afin de trouver des solutions qui permettent de minimiser les hausses de pression induites par de multiples phénomènes présents dans les lignes faisceaux. Pour le LHC, l'apparition d'instabilités peut être due à la succession de plusieurs processus. Tout d’abord, le faisceau de protons de haute intensité ionise le gaz résiduel, produisant des ions positifs (principalement H2+ et CO+) ainsi que des électrons qui sont accélérés et qui impactent la paroi en cuivre des tubes de faisceaux. Ensuite, ces interactions induisent : (i) une désorption des gaz absorbés sur les parois, conduisant à des élévations de pression; (ii) la création de particules secondaires (ions et électrons). Dans ce dernier cas, la production d'électrons secondaires entraîne, par effet d’avalanche, la formation de nuages d’électrons, dont la limitation est l'un des enjeux majeurs de l'anneau de stockage du LHC. Ces nuages génèrent des montées de pression et des dépôts de chaleur sur les parois du collisionneur pouvant conduire à des « quench » d’aimants supraconducteurs. Tous ces phénomènes limitent l'intensité maximale et augmentent l’émittance des faisceaux et donc   la luminosité ultime atteignable dans un accélérateur de protons. Ce travail de thèse a pour but d’étudier certains phénomènes fondamentaux qui contrôlent la pression dynamique dans le LHC, à savoir les effets induits par les électrons et les ions, d’une part, et l'influence de la chimie de surface du cuivre constituant les écrans faisceaux, d’autre part. Dans un premier temps, les courants d’électrons et d’ions ainsi que la pression ont été mesurés in situ dans le Secteur Pilote Vide (VPS) situé sur l'anneau du LHC pendant la deuxième période d’exploitation du collisionneur. En analysant ces résultats , une quantité d’ion plus importante que prévu a été détectée et la relation entre les électrons, les ions et les variations de pression a été étudiée. D’autre part, la désorption stimulée par les ions a été mesurée au laboratoire au CERN en utilisant un bâti expérimental dédié. L’'influence de la nature, de la masse et de l'énergie des ions incidents interagissant avec les surfaces sur les rendements de désorption ionique a été discutée. De plus, des analyses approfondies de la surface de cuivre   constituant l'écran faisceau ont été réalisées dans le laboratoire IJCLab pour identifier le rôle joué par la chimie de surface du cuivre sur le rendement d’émission électronique, les processus de conditionnement de surface et la désorption de gaz stimulée. Le rôle fondamental de composés chimiques sur la surface (contaminants, présence de carbone et d'oxydes natifs) sur le rendement de production des électrons secondaires a été mis en évidence. Enfin, nous avons proposé un code de simulation permettant de prédire les profils de pression dans les chambres à vide des accélérateurs de particules ainsi que leur évolution temporelle. Ce nouveau code de simulation appelé DYVACS (DYnamic VACuum Simulation) est une amélioration du code VASCO développé par le CERN. Il a été appliqué pour simuler la pression dynamique dans le VPS. L'évolution du nuage d'électrons a été implémentée dans le code via des « maps   » permettant de calculer l'évolution de la densité des nuages d'électrons. L'ionisation du gaz résiduel par les électrons a également été prise en compte. Finalement, les résultats obtenus avec DYVACS ont été comparés aux mesures de pression enregistrées dans le LHC. Les résultats obtenus à l’issu de ces travaux de thèse, ainsi que les développements expérimentaux et de simulation réalisés, pourront permettre l’étude de la stabilité du vide de futurs accélérateurs de particules tels que HL-LHC ou FCC (ee et hh).

Dynamic pressure in particle accelerators : Experimental measurements and simulation for the LHC

Abstract :

Ultra-High Vacuum is an essential requirement to achieve design performances and high luminosities in high-energy particle colliders. Consequently, the understanding of the dynamic pressure evolution during accelerator operation is fundamental to provide solutions to mitigate pressure rises induced by multiple-effects occurring in the vacuum chambers and leading to beam instabilities. For the LHC, the appearance of instabilities may be due to the succession of several phenomena. First, the high intensity proton beams ionize the residual gas producing positive ions (mainly H2+ or CO+) as well as accelerated electrons which impinge the copper wall of the beam pipe. Then, these interactions induce: (i) the desorption of gases adsorbed on the surfaces leading to pressure rises; (ii) the creation of secondary particles (ions, electrons). In this latter case, the production of secondary electrons leads to the so-called “Electron Cloud” build-up by multipacting effect, the mitigation of which being one of the major challenges of the LHC storage ring. Electron clouds generate beam instabilities, pressure rises and heat loads on the walls of beam pipe and can lead to “quench” of the superconducting magnets. All these phenomena limit the maximum intensity of the beams and thus the ultimate luminosity achievable in a proton accelerator.

This work aims to investigate some fundamental phenomena which drive the dynamic pressure in the LHC, namely the effects induced by electrons and ions interacting with the copper surface of the beam screens on the one hand and the influence of the surface chemistry of copper on the other hand. First, in-situ measurements were performed. Electron and ion currents as well as pressure were recorded in situ in the Vacuum Pilot Sector (VPS) located on the LHC ring during the RUN II. By analyzing the results, more ions than expected were detected and the interplay between electrons, ions and pressure changes was investigated. Then, the ion-stimulated desorption was studied, using a devoted experimental set-up at the CERN vacuum Lab. The influence of the nature, mass, and energy of the incident ions interacting with the copper surface on the ion-desorption yields was discussed. In addition, extensive surface analyses were performed in the IJCLab laboratory to identify the role played by the surface chemistry on the electron emission yield, surface conditioning processes and the stimulated gas desorption. The fundamental role of the surface chemical components (contaminants, presence of carbon and native oxide layers) on the secondary electron yield was evidenced. Finally, we proposed a simulation code allowing to predict the pressure profiles in the vacuum chambers of particle accelerators as well as their evolution under dynamic conditions (i.e. as a function of time). This new simulation code called DYVACS (DYnamic VACuum Simulation) is an upgrade of the VASCO code developed at CERN. It was applied to simulate the dynamic pressure in the VPS when proton beams circulate into the ring. The electron cloud build-up was implemented in the code via electron cloud maps. The ionization of the residual gas by electrons was also considered. Results obtained with the DYVACS code are compared to pressure measurements recorded during typical fills for physics and a good agreement is obtained.

This PhD study has provided interesting results and has allowed the development of new experimental and simulation tools that will be useful for further investigations on the vacuum stability of future particle accelerators such as HL-LHC or FCC (ee and hh).

Organisé par

Membres du jury :
Achille STOCCHI Professeur, Université Paris-Saclay IJCLab
Frank ZIMMERMANN Professeur, CERN
Roberto CIMINO Professeur, LNF
Yolanda GOMEZ MARTINEZ Ingénieur de recherche, LPSC
Markus BENDER Professeur, GSI
Pedro COSTA PINTO Ingénieur de recherche, CERN
Romuald LEVALLOIS Ingénieur de recherche, GANIL
Gaël SATTONNAY Professeur, Université Paris-Saclay IJCLab
Vincent BAGLIN Ingénieur de recherche, CERN