

Collinear laser spectroscopy of Pd isotopes at Jyväskylä

Alejandro Ortiz Cortés

Supervisors: Lucia Caceres

lain Moore

- 1. Motivation
 - Neutron rich (first experiment)
 - Neutron deficient (second experiment)
- 2. Experimental setup
- 3. Results
 - Mean square charge radiii
 - Dipole magnetic moments
 - Quadrupole electric moments
 - Theoretical calculations

1. Motivation

- Neutron rich (first experiment)
- Neutron deficient (second experiment)
- 2. Experimental setup
- 3. Results
 - Mean square charge radiii
 - Dipole magnetic moments
 - Quadrupole electric moments
 - Theoretical calculations

1. Motivation

Single particle VS Collectivity

												*Sn ⊮	⁺⁰ºSn ⊮	¹º¹Sn ⊮	102Sn ∦+	⁺°°Sn ⊮	°⁰′Sn ₽+	¹ºSSn ≱≁	¹°°Sn ⊮	°⁰7Sn ≇∗	108Sn 84	¹⁰⁰Sn ⊮	***Sn •* cepture	'''Sn ⊮	***Sn 29+	°°Sn ⊮	114Sn Stable	115Sn Steble	***Sn Stable	117Sn Stable	11ºSn 2140/4	***Sn Stable	135Sn Stable	¹²¹Sn ₽	122Sn 29-	°≌Sn ∲
						d'				"In ₅•	°7In s+	°°In ₅+	"In ₅	°⁰ln ≉	¹⁰¹In ଃ+	¹⁰⁰In ⊮	°°⁰In ₽∙	¹⁰⁴In 8+	⁺°⁵In ⊮	⁺°⁵In ₽+	^{۱۵7} In ۶۰	¹⁰⁰In ⊮	⁺°°In ⊮	°≌In ≉	¹¹¹ in e- septime	¹¹² In ⊮	¹¹⁵ in Stable	°i⁴ln ₽	^{**s} In ⊳	""In ⊬	[™] In ⊮	**°In ⊮	"°In ⊬	122]In 91	¹²¹In ⊮	'²²In ₽
Ne to te								°°Cd ⊮	°Cd ⊶	"Cd	***Cd	°°Cd	¹ººCd ≇•	°°°Cd ₽	¹⁰⁴Cd ⊮	¹ºººCd ₽+	°°≤Cd ∞≁	¹‴Cd ₽+	Cd ²⁰¹	***Cd	110Cd	111Cd Stable	112Cd Stable	""Cd	114Cd	""Cd ⊬	°"Cd ⇔	¹¹⁷ Cd ₽	°°Cd ⊬	°"Cd	°≌Cd ₽	¹²¹ Cd ₽				
			, , , , , ,	,o`` ²	, or			≌Ag ⊮	°°Ag ⊮	"Ag ⊶	"Ag ⊬	*'Ag ⊮	"Ag ⊮	"Ag	"Ag	100Ag A+	101 Ag	***Ag	1°°Ag	104Ag	""Ag	106Ag	107Ag	'°*Ag	**Ag	™Ag	₩Ag	***Ag	''*Ag	""Ag ⊬	"'Ag	''*Ag ĕ	""Ag ⊬	`°Ag	'''Ag ₽	⁺∞Ag ₽
			x .xi	sho			"Pd	*'Pd	^{*≏} Pd ⊮	*°Pd ⊮	^e Pd ⊮	**Pd ⊮	*'Pd ⊮	°′Pd ⊮	°°Pd ⊮	"Pd ⊶	¹⁰⁰ Pd ⊷aspure	¹⁰¹ Pd ⊮	102Pd 28+	103Pd e-capture	104Pd Stable	105Pd 21451e	105Pd Stable	107Pd 9-	108Pd Stable	¹°°Pd ⊮	"⁰Pd ≌⊱	[™] Pd	¹¹² Pd ⊮	'"ªPd ⊬	[™] Pd ⊮	¹¹⁵ Pd ⊮	""Pd ⊬	**7Pd #	""Pd	***Pd
			J. SI			"Rh ⊶	"Rh ₀•	[≈] Rh ⊭	*'Rh ₽+	°²Rh ₅•	≌Rh ⊮	"Rh ₽	"Rh ⊮	[%] Rh ⊮	°7Rh ⊮	"Rh ⊮	°°Rh ≇-	100Rh a- aagtura	101 Rh	°⁰Rh ≇•	105Rh Stable	¹ºªRh ⊮	¹º⁵Rh ⊮	***Rh #	¹⁰7Rh ⊮	°°Rh ⊬	° " Rh ₽	[™] Rh ₽	[™] Rh ⊧	°°aRh ⊮	""Rh ₽	""Rh ⊮	"⁼Rh ⊬	°"•Rh ₽	""Rh ⊮	[™] Rh ₽
		\sim		"Ru ≇	**Ru ₽	*7Ru e+	"Ru ₊	**Ru ₽	*°Ru ₽+	"Ru ₅•	≌Ru ⊮	**Ru ₽	"Ru ⊮	"Ru ⊮	**Ru 29+	‴Ru ⊮	**Ru	**Ru	100Ru 3111216	¹⁰¹ Ru Stable	105Ru Stable	¹⁰ªRu ⊮	104Ru ap	***Ru #	™Ru ₽	°″Ru ₽	° " Ru ⊬	™Ru ₽	™Ru ₽	‴Ru ⊬	[™] Ru ⊮	"°Ru ⊮	°"4Ru ⊬	''⁼Ru ⊮	""Ru ₽	"'Ru ₽
			"Тс °	"Tc	"Tc	"тс +	°°Tc ⊮	"Tc ⊬	°°Tc ⊮	°°Tc ⊮	*'Tc ⊮	°°Tc ⊮	°°Tc ⊮	"Tc ⊮	"Tc ₽	"Тс #	*7TC +- capture	"Tc ⊬	**Tc	¹⁰⁰ Тс ₉ .	¹⁰¹ Тс 9-	°°°Tc ⊮	¹°°Tc ₽-	104°Тс э-	™Tc ₽	104Тс ө-	107Тс 9-	TcarTc	°™Tc ⊮	11ºTc ⊮	‴Tc ⊬	¹¹² Tc ⊮	՝՝*Tc ⊮	"⁴Tc ⊮	"⁼Tc ⊮	11 " Tc ⊮
		• Mo ₽	≌Mo ⊮	"Мо "•	"Mo ⊭	"Mo ↔	"Mo ≁	‴Mo ⊭	°°Mo ₅+	°°Mo "∙	*'Mo **	۳Mo ۴۰	⁹² Мо 58+	**Mo • anothe	*4Mo	* ^s Mo sate	**Mo stable	*7Mo	°°Mo ₂⊮	°°Mo ⊬	100Mo 20-	™Mo ⊮	°°°Mo ⊛	™Mo ∌∙	¹º⁴Mo ₽	™Mo e-	¹⁰⁶ Мо 9-	¹°7Mo ₽	°™Mo ⊮	°°°Mo ⊮	™Mo ₽	‴Mo ₽	0M ²¹¹ 9	***Mo 9.	™Mo ₽	115Mo e-
7	٩Nb	*°Nb	*Nb	≌Nb ≇	"Nb ₽	°"Nb ₀+	≌Nb ⊮	"Nb ⊬	‴Nb ⊮	≌Nb ₃+	"Nb	°Nb ₅+	en Nb	*1Nb	^{es} Nb antile	°⁴Nb ⊮	°5Nb ₽	**Nb #	‴Nb ⊮	°°Nb ₽	"Nb	***Nb #*	***Nb	¹⁰≊Nb ₽	⁺°°Nb ₽	™Nb e-	⁰SNb ₽	⁺°≤Nb ₽	°″Nb ⊬	¹⁰°Nb ₽	™Nb ₽	™Nb ⊮	^{™Nb}	^{™2} Nb ₽	""Nb ⊧	***Nb #*
'Zr ' ⊶	[™] Zr ≠	"Zr ⊮	^{₽0} Zr ₽+	°'Zr ≇•	³⁵Zr ₽⁺	[≈] Zr ₀+	°°Zr ⊮	**Zr ⊮	"Zr ⊮	^{ور} ۹۰	^{aa} Zr ⊷aqoura	"Zr ⊮	°°Zr	e"Zr stable	*ºZr mete	"Zr ⊬	¥4Zr s⊱	"Zr ⊬	"Zr 29-	°°Zr ⊮	"Zr ₽	"Zr	°°Zr ⊮	™Zr 9'	¹œZr ⊮	°°sZr ₀	¹⁰ªZr ₽	™Zr ₽	™Zr ₽	⁺©Zr ₽	™Zr ₽	¹º°Zr ₽	[™] Zr ₽	‴Zr ⊮	"²Zr ⊮	

P. Sarriguren. Phys. Rev. C 91, 044304 (2015) ⁵

1. Motivation Neutron deficient

T. Naz et al. Nuclear Physics A 979(2018)1-20

<u>Large Scale Shell Model</u> (LSSM) calculations have computational limitations due to the large model space. The phenomenological correction gives very good results.

<u>Energy Density Functionals</u> (EDF) has been tested by **nuclear** charge radii

<u>Ab-initio</u> requires a consistent description of electro-weak currents. **Magnetic moments** are sensitive observables.

<u>Beyond-mean field</u> calculations define the intrinsic wave functions (HFB) along the quadrupole deformations. **Quadrupole moments** are sensitive observables.

H. Grawe and M. Lewitowicz, Nucl. Phys., vol. A 693, pp. 116-132, 2001

1. Measure of nuclear observables

$$A = \frac{\mu D_0}{\hbar^2 I J}$$
$$B = e Q_s \left\langle \frac{\partial^2 V_e}{\partial z^2} \right\rangle$$

.

 μR_{o}

$$Q_s = \frac{3\Omega^2 I(I+1)}{(I+1)(2I+3)} Q_0$$
$$Q_0 = \frac{3}{\sqrt{5\pi}} Z \langle r_{sph}^2 \rangle \langle \beta_2 \rangle (1+0.36 \langle \beta_2 \rangle)$$

 Q_0

- 1. Motivation
 - Neutron rich (first experiment)
 - Neutron deficient (second experiment)

2. Experimental setup

- 3. Results
 - Mean square charge radiii
 - Dipole magnetic moments
 - Quadrupole electric moments
 - Theoretical calculations

2. Laser spectroscopy

$$\frac{\Delta E}{\hbar} = \frac{K}{2}A + \frac{3K(K+1) - 4I(I+1)J(J+1)}{8I(2I-1)J(2J-1)}B$$

0

Frequency (MHz)

$$K = F(F+1) - I(I+1) - J(J+1)$$

Simulation 15

2. Analysis

98

99

100

101

- Even isotopes ¹¹²⁻¹¹⁸Pd ۲
- Odd isotopes ¹¹³Pd and ¹¹⁵Pd ۲
- Reference isotope ¹⁰⁸Pd •

Neutron deficient experiment

- All isotopes 98-101Pd ٠
- No able to measure ¹⁰³Pd •
- Reference isotope ¹⁰²Pd •

¹⁰¹Pd

2300

2350

2400

7500

16

7000

- 1. Motivation
 - Neutron rich (first experiment)
 - Neutron deficient (second experiment)
- 2. Experimental setup
- 3. <u>Results</u>
 - Mean square charge radiii
 - Dipole magnetic moments
 - Quadrupole electric moments
 - <u>Theoretical calculations</u>

3. Results Magnetic moments

Atomic Data and Nuclear Data Tables 109–110 (2016) 1–204 / D. T. YORDANOV et al. PHYSICAL REVIEW C98, 011303(R) (2018)

3. Results

Quadrupole electric moment

- The flat shape of the isotonic lines suggest that there is no significant effect on the deformation with increasing Z
- Palladium (Z=46) is the element who seems to have the most deformation in the region

- Systematics of the región show a linear trend, probably due to the addition of neutron pairs to the d_{5/2} shell plus an odd neutron
- The small increase between the $^{105}\rm{Pd}$ and the $^{113}\rm{Pd}$ could be due to that the neutron ocupation of the d_{5/2} Shell is already at maximum as could happend for $^{109}\rm{Cd}^{[]}$

Atomic Data and Nuclear Data Tables 109–110 (2016) 1–204 / []D. T. YORDANOV et al. PHYSICAL REVIEW C98, 011303(R) (2018)

3. Outlook and conclusions

Conclusions

- Prolate deformation on neutron rich nuclei
- Theoretical calculations do not reproduce oblate deformation in neutron deficient isotopes

Perspectives

- Colinear laser spectroscopy on ¹⁰³Pd
- Hot cavity laser spectroscopy on more neutron deficient isotopes, crossing N=50

THANKS FOR YOUR ATTENTION