

Pygmy dipole resonance studies of ${}^{82}Ga$ via β -decay spectroscopy using PARIS array Isol-France meeting

Lama Al Ayoubi March 17, 2021

Physics Motivation

Experimental Setup

Data Analysis

Preliminary Results

Physics Motivation

Pygmy Dipole Resonance: Oscillation of a neutron skin against a symmetric core of proton/neutron

17/03/2021

17/03/2021

- < 10% of the total B(E1)
- Predicted enhancement after crossing N=50

Pygmy Dipole Resonance: Oscillation of a neutron skin against a symmetric core of proton/neutron

17/03/2021

- < 10% of the total B(E1)
- Predicted enhancement after crossing N=50
- Enhancement with exoticity (further from stability, better it is ...)

17/03/2021

- < 10% of the total B(E1)
- Predicted enhancement after crossing N=50
- Enhancement with exoticity (further from stability, better it is ...)
- Enhancement of Γγ→ consequence on (n,γ) cross sections which in turn has impact on the r-process calculations.

17/03/2021

 β -decay of ⁸²Ga

Z=28

910a 920a 920a 940a 950a

77Zn 78Zn 79Zn 80Zn 81Zn 82Zn 83Zn 84Zn 85Zn

7601 7701 7801 7901 8001 8101 8201

N=50 $^{80}Ga \rightarrow ^{80}Ge$

 $^{82}Ga \rightarrow ^{82}Ge$

 $^{83}Ga \rightarrow ^{83}Ge$

 $^{84}Ga \rightarrow ^{84}Ge$

7300 7400 7500 7600 7700

27Ni 78Ni 79Ni 80Ni

78Ga 79Ga 80Ga 81Ga 82Ga 83Ga 84Ga 85Ga 86Ga 87Ga

The start of a program to investigate the population of PDR states through β -decay in $N \ge 50$ isotonic chains at ALTO

ALTO-RIB experiment: Measurement (1 single LaBr3): ${}^{80}Ga \rightarrow {}^{80}Ge$ and ${}^{83}Ga \rightarrow {}^{83}Ge$

- Gamow-Teller (GT) beta decay creates a depletion of n-density in the core.
- The excited ^{83}Ge states can then decay via E1 $\gamma\text{-emission}$ with a «PDR-like» transition densities.
- The Low production rate of very neutron-rich systems makes investigating the PDR via the standard charge-exchange or Coulomb-excitation reactions difficult $\rightarrow \beta$ -decay

17/03/2021

 β -decay of ⁸²Ga

- High Q_{β} +Low neutron separation energy S_n
- J^π selection rules compatible between GT transitions and E1 decays to the ground state →so likely to populate 1⁻ states

 β -decay of ⁸²Ga

- High Q_{β} +Low neutron separation energy S_n
- J^π selection rules compatible between GT transitions and E1 decays to the ground state →so likely to populate 1⁻ states

M. F. Alshudifat et al. Phys. Rev. C 93, 044325 (2016) D. Testov et al. Nuclear Inst. and Methods in Physics Research, A (2016)

17/03/2021

Isol France - Lama AL Ayoubi

4/13

 β -decay of ⁸²Ga

- High Q_{β} +Low neutron separation energy $S_n \rightarrow$ no reported states above Sn
- J^{π} selection rules compatible between GT transitions and E1 decays to to the ground state \rightarrow no E1 transitions to the ground state are seen
- · The highest γ -ray detected is 2 MeV below Sn

M. F. Alshudifat et al. Phys. Rev. C 93, 044325 (2016) D. Testov et al. Nuclear Inst. and Methods in Physics Research, A (2016)

17/03/2021

Experimental Setup

Experimental Setup

(SToGS : https://github.com/stezow/stogs)

 ALTO facility: Use of laser resonance ionisation to select only Ga element

- BEDO tape station
- Plastic detector for β -particles detection
- A Segmented clover detector
- A HPGe detector
- 3 PARIS clusters for efficient high-energy γ -ray detection.

17/03/2021

PARIS performance

Phoswich detector: LaBr3/CeBr3 crystal (2"x2"x2") + NaI crystal (2"x2"x6") + PMT

17/03/2021

Experimental Setup

- \cdot HPGe efficiency : \sim 0.4 % @ 1-MeV
- + PARIS efficiency : $\sim 5~\%$ @ 8-MeV
- $\cdot\,\sim$ 60 % efficiency for beta detection

17/03/2021

Experimental Setup

- $\cdot\,$ HPGe efficiency : \sim 0.4 % @ 1-MeV
- $\cdot\,$ PARIS efficiency : \sim 5 % @ 8-MeV
- $\cdot\,\sim$ 60 % efficiency for beta detection

- 3 sec : Beam collection
- 2 sec : Decay time
- 0.5 sec : Background

Data Analysis

Energy calibration

- Gain drift observed in all detector types
- Example: The positions of the internal radioactivity of PARIS peak have been tracked in the coax and compared to run number 8
- Solution: calibrate the group of files that have similar gain

17/03/2021

17/03/2021

500

250

Isol France - Lama AL Ayoubi

Energy calibration

- Gain drift observed in all detector types
- Example: The positions of the internal radioactivity of PARIS peak have been tracked in the coax and compared to run number 8
- Solution: calibrate the group of files that have similar gain

8/13

Detector Addback

Time window: 50 ns Addback factor: 1.4 at 1348 KeV

Time window: 30 ns Addback factor: 1.1 at 1348 KeV

17/03/2021

PARIS Internal Addback

More than 10 % of events are recovered from internal addback

PARIS Internal Addback

More than 10 % of events are recovered from internal addback

17/03/2021

Isol France - Lama AL Ayoubi

10/13

Preliminary Results

Bateman fit to extract $T_{1/2}$

- $T_{1/2}$ = 607 (15) ms (599 (2) ms NNDC) on the most intense ⁸²Ge peak
- $T_{1/2}$ = 596 (23) ms at higher energy => compatible with $T_{1/2}$ of ⁸²Ga

17/03/2021

High energy γ detected

High energy levels are populated in ⁸²Ge

17/03/2021

High energy γ detected

High energy levels are populated in ⁸²Ge

17/03/2021

Summary

1. An experiment was performed to populate PDR states via beta decay of Ga isotopes at ALTO facilty.

17/03/2021

Summary

- 1. An experiment was performed to populate PDR states via beta decay of Ga isotopes at ALTO facilty.
- 2. The setup used was composed of Ge detectors and the PARIS array.

17/03/2021

Summary

- An experiment was performed to populate PDR states via beta decay of Ga isotopes at ALTO facilty.
- 2. The setup used was composed of Ge detectors and the PARIS array.
- 3. Energy calibration and addback procedure were presented as part of the data analysis.

17/03/2021

Isol France - Lama AL Ayoubi

Summary

- An experiment was performed to populate PDR states via beta decay of Ga isotopes at ALTO facilty.
- 2. The setup used was composed of Ge detectors and the PARIS array.
- 3. Energy calibration and addback procedure were presented as part of the data analysis.
- 4. The half life of 82Ga was found to be 607 (15) ms

17/03/2021

Isol France - Lama AL Ayoubi

Summary

- An experiment was performed to populate PDR states via beta decay of Ga isotopes at ALTO facilty.
- 2. The setup used was composed of Ge detectors and the PARIS array.
- 3. Energy calibration and addback procedure were presented as part of the data analysis.
- The half life of 82Ga was found to be 607 (15) ms
- 5. High energy levels around and above Sn are populated in ⁸³Ge and ⁸²Ge , analysis will be finished soon.

Acknowledgment

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreements No. 771036 (ERC CoG MAIDEN) and No. 654002 (ENSAR2). I got ENSAR support for my beamtime participation and therefore it would be good to acknowledge it.