

Searching for physics beyond the Standard Model using β decay of ³²Ar.

- o Physics case
- o Experimental setup
- o Results & discussion
- o Conclusion & perspective

ISOL France meeting (March 17-19, 2021) Victoria Araujo-Escalona

PhD student KU Leuven and currently based at CENBG

Collider 01 experiments at high energies.

new gauge

Physics Case

Nuclear Observables:

[1] J.D. Jackson et al Phys. Rev. 106, 517 (1957)

(!) Measure goes like an average over the β spectrum

What do we measure?

Kinematic proton energy shift

Technique advantages

Ε

- Recoil energy ~hundreds eV
- Proton energies ~several MeV
- The energy of the emitted protons is subject to kinematic shift due to the recoiling daughter nucleus

What do we measure?

Kinematic proton energy shift

Experimental objective

Ε

- Measuring proton energy and momentum from ³²Cl with high resolution
- ${\ensuremath{\,{\scriptscriptstyle F}}}$ Extract $a_{\beta\nu}$ from beta decay of the

³²Ar → ³²Cl

Experimental technique

Kinematic proton energy shift

KU LEUVEN

ISOLDE @ CERN

Isotope On-Line Device at CERN's Accelerators Complex

KU LEUVEN

Experimental Setup

Kinematic proton energy shift β-p coincidence measurements

Weighted average energy shift $\Delta E = \left| \bar{E}_{coinc} - \bar{E}_{single} \right| = 4.51 \pm 0.04 \text{ keV}$

Angular correlation coefficient Monte Carlo simulations

Systematic uncertainties

Angular correlation coefficient, $a_{\beta\nu}$ The 3rd best measurement!

Fermi transition

a_F = 0.9989(52) Adelberger et al. ⁽³²Ar) Gamow-
Teller $a_{GT} = -0.33(3)$ transitionCarlson et al. (23Na)

a_{GT} = -0.3343(30) Johnson et al. (⁶He)

a_F = 0.9981 (30) Gorelov et al. (³⁸K^m) a_F = 1.000(37)_{stat}(27)_{syst} Araujo et al. (³²Ar) a_{GT} = -0.3342(38)

Sternberg et al. (⁸Li)

a_{GT} = -0.338(66)_{stat}(34)_{syst} Araujo et al. (³²Ar)

🗇 V. Araujo-Escalona et al., PRC 101, 05501(2020)

Conclusions

✓ Successful proof-of-principle experiment, expected kinematic energy shifts of proton peaks is observed, providing the third most precise measurement of $a_{\beta\nu}$ in a pure Fermi transition.

- \checkmark Simultaneous measurements of $a_{\beta\nu}$ for different transitions (Fermi and Gamow-Teller) in a single experiment can be performed with same isotope.
- Setup that allows to get a better control of \checkmark systematic errors.
- \checkmark Agreement with the SM with deviation σ and 1σ for F and GT, respectively.

>>>> Outlook

- ³²Ar production, transmission and longer beamtime
- New setup geometry and improve proton energy resolution. Segmented silicon Talk: M. Pomorski 18/03 @ 14:45 detectors with well known and thinner dead layer.
- Reduce thickness of the mylar foi
- Full characterization of the plastic scintillator. Lower the positron energy threshold below 10keV to reduce the uncertainty.
- Simultaneous measurement on $a_{\beta\gamma}$ with the intense proton lines followed a GT transition and the superallowed F transition

Conclusion and outlook

Exclusion plot

Thank you!

victoria.araujoescalona@kuleuven.be

V. Araujo-Escalona, N. Severijns, S. Vanlangendonck. KU Leuven, Belgium

X. Fléchard, E. Liénard, G. Quéméner. LPC Caen, France

D. Zakoucky. P. Alfaurt, P. Ascher, B. Blank, L. Daudin, M. Gerbaux, J. Giovinazzo, Rez, Czech Republic S. Grévy, T. Kurtukian Nieto, M. Roche, M. Versteegen CENB Gradignan, France

D. Atanasov. CERN, Switzerland

KU LEUVEN