ISOL-France Meeting, March 17, 2021

WISArD – InESS (¹¹⁴In Energy Spectrum Shape)

Federica Cresto

LPCC, Laboratoire de Physique Corpusculaire de Caen CENBG, Centre d'Etudes Nucleaires de Bordeaux – Gradignan

Many still open questions in both **neutrino** and **nuclear** physics:

1.2

0.8

10

Data / Prediction

<u>Reactor Antineutrino Anomaly & Reactor bump</u>

- → nuclear reactors → fission → n-rich fragments → β -decays → v spectra
- \rightarrow experimental v flux is systematically lower than theoretically predicted
- \rightarrow bump of v at E \approx 5 MeV

RENO/(Huber+Mueller)

 10^{2}

RENO, PRL 116, 211801 (2016)

 $R_{\text{RENO}} = 0.946 \pm 0.021$

Other experiments

Experiments Unc.

RENO Global average

RENO, South Korea

Daya Bay experiment, China

Fairly unexplained v spectrum shape

 10^{3}

Distance (m)

possible existence of non-SM sterile neutrinos shortcoming in theoretical δ_{vrr} weak

flux calculations

 $\delta_{_{WM}}$ weak magnetism term (main contribution)

Daya Bay

Many still open questions in both **neutrino** and **nuclear** physics:

<u>Reactor Antineutrino Anomaly & Reactor bump</u>

It can be inferred by **precise GT βspectrum shape measurements**

	Classification	assification ΔJ^{π} Fractional Weak Magnetism Correction		
ľ	Gamow-Teller:		2 E	
	Allowed	1+	$\frac{2}{3} \left[\frac{\mu_{\nu} - 1/2}{M_N g_A} \right] \left(E_e \beta^2 - E_\nu \right)$	
	1 st F.	0	0	
	1^{st} F. ρ_A	0-	0	
	1^{st} F.	1-	$\left[\frac{\mu_{\nu} - 1/2}{M_N g_A}\right] \left[\frac{(p_e^2 + E_{\nu}^2)(\beta^2 E_e - E_{\nu}) + 2\beta^2 E_e E_{\nu}(E_{\nu} - E_e)/3}{(p_e^2 + E_{\nu}^2 - 4\beta^2 E_{\nu} E_e/3)}\right]$	
	Uniq. 1 st F.	2^{-}	$\frac{3}{5} \left[\frac{\mu_{\nu} - 1/2}{M_N g_A} \right] \left[\frac{(p_e^2 + E_{\nu}^2)(\beta^2 E_e - E_{\nu}) + 2\beta^2 E_e E_{\nu} (E_{\nu} - E_e)/3}{(p_e^2 + E_{\nu}^2)} \right]$	
9	Fermi:			
	Allowed	0^{+}	0	
	1^{st} F.	1-	0	
	1^{st} F. \vec{J}_V	1-	-	

A. Hayes, P. Vogel, Annu. Rev. Nucl. Part, 66, 219–244 (2016)

 $\boldsymbol{\delta}_{_{\mathrm{WM}}}$ never measured before in the fission fragment mass range (A >70)

Many still open questions in both **neutrino** and **nuclear** physics:

Standard Model of weak interaction

Nuclear β decay is described by the following Lorentz-invariant Hamiltonian:

Hadronic terms Leptonic terms

$$H_{\beta} = \frac{G_F}{\sqrt{2}} V_{ud} \left[\underbrace{\left(\bar{\psi}_p \gamma_{\mu} \psi_n \right)}_{\left(\bar{\psi}_p \gamma_{\mu} \psi_n \right)} \underbrace{\left(\bar{\psi}_e \gamma^{\mu} (C_V + C'_V \gamma_5) \psi_{\nu} \right)}_{- \left(\bar{\psi}_p \gamma_{\mu} \gamma_5 \psi_n \right)} \underbrace{\left(\bar{\psi}_e \gamma^{\mu} \gamma_5 (C_A + C'_A \gamma_5) \psi_{\nu} \right)}_{+ \left(\bar{\psi}_p \psi_n \right)} \underbrace{\left(\bar{\psi}_e (C_S + C'_S \gamma_5) \psi_{\nu} \right)}_{+ \frac{1}{2} \left(\bar{\psi}_p \sigma_{\lambda \mu} \psi_n \right)} \underbrace{\left(\bar{\psi}_e \sigma^{\lambda \mu} (C_T + C'_T \gamma_5) \psi_{\nu} \right)}_{- \frac{0}{2}}_{+ h.c.} \\ + h.c. \\ STANDARD MODEL: V-A theory}$$

• Only vector and axial-vector contributions: $C_v = 1$, $C_A = -1.27$

 $C_{s} = C_{s}' = C_{T} = C_{T}' = 0$

BEYOND STANDARD MODEL

• Search for deviation from β -theory \rightarrow scalar and tensor contribution?

Many still open questions in both **neutrino** and **nuclear** physics:

Standard Model of weak interaction

Information on the $C_{_S}$ and $C_{_T}$ coupling constants can be retrieved experimentally from a precise measurement of the energy distribution of e- in β -decays:

$$N(W)dW = \frac{G_V^2 V_{ud}^2}{2\pi^3} F_0(Z, W) L_0(Z, W) U(Z, W) D_{\rm FS}(Z, W, \beta_2) R(W, W_0) R_N(W, W_0, M) \\ \times Q(Z, W) S(Z, W) X(Z, W) r(Z, W) C(Z, W) D_C(Z, W, \beta_2) pW(W_0 - W)^2 dW \\ \equiv \frac{G_V^2 V_{ud}^2}{2\pi^3} K(Z, W, W_0, M) A(Z, W) C'(Z, W) pW(W_0 - W)^2 dW.$$
(1)

EXPERIMENTALLY

WISArD – InESS (¹¹⁴In Energy Spectrum Shape)

- ¹¹⁴In radioactive source \rightarrow pure allowed GT decay, Q_{β} = 2.2 MeV
- β decay
 - \rightarrow e-emitted \rightarrow B field \rightarrow 2 plastic scintillators coupled with SiPMs
- B field up to 9 T

0+

WISArD – InESS (114In Energy Spectrum Shape)

199191

CFR

EXPERIMENTALLY

- ¹¹⁴In radioactive source \rightarrow pure allowed GT decay, Q_{β} = 2.2 MeV
- β decay
 - \rightarrow e-emitted \rightarrow B field \rightarrow 2 plastic scintillators coupled with SiPMs
- B field up to 9 T

Experimental set-up

- 2 plastic scintillators (d = 20 mm, L = 50 mm)
- 2 SiPMs (Hamamatsu S13360-CS, photosensitive area 6x6 mm²) assembled on 2 driver circuits (Hamamatsu C12332-01)
 - → tested in CENBG in February 2020 (e- spectrometer and LED)
 - \rightarrow HV can be set via USB connection \rightarrow possibility to adapt gain at lower temperatures
- FASTER acquisition system (LPC Caen)

Scintillator coupled to SiPM and connected to the driver circuit

WISArD tower to be placed inside the magnet Detectors are covered for tests at room temperature

Detectors assembly completed and optimised (November 2020)

6

Experimental program – December 2020

- Calibration runs (preliminary tests):
 - > 207 Bi source → 2 peaks from electron conversion at known energies (~470 and 970 keV)
 - > 137 Cs source → 1 peak from electron conversion at known energy (~620 keV)
 - > 90 Sr source → continuum beta spectrum, comparable to 114 In (endpoint ~2.2 MeV)
- → measurements acquired at different B field values (comparison with 2019 WISArD data taking)
- ¹¹⁴In runs (final tests):
- \rightarrow measurements taken at different B field values and activities (A = 1 kBq, A = 5 kBq)

TOTAL OF 56 runs acquired

Element	Mass	Activity / kBq	Date
Bi	207	21.78	08.03.2018
Cs	137	38.02	08.03.2018

Commercial calibration sources

Runs taken with source of 207 Bi with QDC1: [-10, 250] ns

Experimental program – December 2020

- Calibration runs (preliminary tests):
 - > ²⁰⁷Bi source → 2 peaks from electron conversion at known energies (~470 and 970 keV)
 - > 137 Cs source → 1 peak from electron conversion at known energy (~620 keV)
 - > 90 Sr source → continuum beta spectrum, comparable to 114 In (endpoint ~2.2 MeV)
- → measurements acquired at different B field values (comparison with 2019 WISArD data taking)
- ¹¹⁴In runs (final tests):
- \rightarrow measurements taken at different B field values and activities (A = 1 kBq, A = 5 kBq)

TOTAL OF 56 runs acquired

Experimental programme

All runs with all sources → **oscillatory behaviour** at lower energies (e.g. ²⁰⁷Bi)

Assuming that difference in charge between two adjacent peaks correspond to one photon
 → consistent with measurements → high SiPMs resolution

9

Conclusions & outlook

- Reconstruction of the β -spectrum shape of the ¹¹⁴In
- Comparison with theoretical Beta Spectrum Generator (BSG) code
- Precise determination (<10⁻³) of the weak magnetism term and the Fierz term
 - \rightarrow reactor antineutrino anomaly, reactor bump
 - → possible existence of a tensor current (physics BSM)

SYSTEMATICS EFFECTS:

- Energy losses inside the source Mylar foil
 - → Geant4 simulations
- SiPM cell triggering probability
 - ightarrow numerical simulations, combinatorics
- Signal pile-up
 - \rightarrow Geant4 simulations \rightarrow time decay distribution

10

Thanks for attention!

199192

P. Alfaurt, P. Ascher, D. Atanasov, B. Blank, F. Cresto, L. Daudin, X. Fléchard, M.Gerbaux, J. Giovinazzo, S. Grévy, T. Kurtukian-Nieto, E. Liénard, N. Severijns, S. Vanlangendonck, M. Versteegen, D. Zakoucky

Backup slides

Inverse beta decay (IBD): $\overline{\nu}_e + p \rightarrow e^+ + n$ $E_{\overline{\nu}} \approx T_{e^+} + 1.8 \text{ MeV}$ The positron carries most of the $\overline{\nu}_e$ energy

Gd-LS

reactor thermal power, energy released per fission, baseline, target protons, detection efficiency, oscillation, etc.

B2

Reactor bump

Bump in 4-6 MeV prompt energy (5-7 MeV neutrino energy) observed independently in 2014 by three ϑ₁₃ experiments (Pontecorvo – Maki – Nagagawa – Sakata matrix)

ISOLDE experimental hall - CERN

María J G Borge and Klaus Blaum, J. Phys. G: Nucl. Part. Phys. 45 (2018) 010301

The Standard Model of weak interaction (3)

Information on the theoretical coupling constants can be retrieved experimentally from a precise measurement of the energy distribution of e- in β -decays:

$$N(W)dW = \frac{G_V^2 V_{ud}^2}{2\pi^3} F_0(Z, W) L_0(Z, W) U(Z, W) D_{FS}(Z, W, \beta_2) R(W, W_0) R_N(W, W_0, M)$$
(2)
 $\times Q(Z, W) S(Z, W) X(Z, W) r(Z, W) C(Z, W) D_C(Z, W, \beta_2) pW(W_0 - W)^2 dW$
 $\equiv \frac{G_V^2 V_{ud}^2}{2\pi^3} K(Z, W, W_0, M) A(Z, W) C'(Z, W) pW(W_0 - W)^2 dW.$

Effect	Formula	Magnitude
Phase space factor	$pW(W_0 - W)^2$	Unity or larger
Fermi function	F_0	
Finite size of the nucleus	L_0	
Radiative corrections	R	
Shape factor	С	$10^{-1} - 10^{-2}$
Atomic exchange	X	
Atomic mismatch	r	
Atomic screening	S	
Shake-up & Shake-off	See Atomic mismatch	
Isovector correction	C_I	
Diffuse nuclear surface	U	$10^{-3} - 10 - 4$
Nuclear deformation	D_{FS} & D_C	
Recoil Coulomb correction	Q	
Recoiling nucleus	R_N	
Molecular screening	ΔS_{Mol}	
Molecular decay	Case by case	
Bound state β decay	Γ_b/Γ_c	smaller than 1×10^{-4}
Neutrino mass	negligible	

- Corrections on Fermi function
- Nuclear structure corrections
- Atomic and molecular corrections
- Radiative corrections

