

Latest advances in the measurements of β-v correlation coefficients in nuclear β decays using LPCTrap

Rodolphe Combe

ISOL France – 03/17/2021

Overview

- Motivations
- Theory
- State of the art
- LPCTrap
- LPCTrap @ GANIL
- Data analysis
- Latest results
- Conclusion and prospective

Motivations

- Standard Model of particle physics \rightarrow huge success!
- Not the end of the story: need Beyond Standard Model physics to explain some measurements (baryogenesis, neutrino masses, etc.)
- Precise measurement of β-decay sensitive to new physics
- Current limits on exotic current existence of the order of 1%
- Complementary to High-Energy physics (looking for the effects vs creating the particle): limits of the order of the ‰
 = limits on the existence of a new boson up to 2.5 TeV

Theory

- Current theory = V-A theory
 - Only Vector and Axial-Vector interactions
 - Neither Scalar nor Tensor interaction
 - Maximum parity violation (no right-handed neutrino)
 - No CP-violation
- To what extend holds the theory?
- At low energy, new physics measurable via correlations

Theory

• Measurement of *a* = measurement of recoil ions spectrum

• Give access to
$$\tilde{a} = \frac{a}{1+b < m_e/E_e > b}$$

Theory

• Measurement of *a* = measurement of recoil ions spectrum

• Give access to
$$\tilde{a} = \frac{a}{1+b < m_e/E_e > b}$$

State of the art

Adapted from M. Burkey: Searching For Tensor Currents In The Weak Interaction Using Lithium-8 Decay, PhD University of Chicago

LPCTrap

- Transparent Paul trap:
 - Three pairs of electrodes:
 - RF electrodes
 - Injection/extraction electrodes (200-ms cycles)
 - Field-correction electrodes
- β-telescope: -
 - DSSD + plastic scintillator
- Recoil ion detector:
 - 2-kV acceleration grid +
 -250-V focusing lens +
 -4-kV polarized MCP

P. Delahaye Eur. Phys. J. A 55 (2019) 101

LPCTrap@GANIL

Three ions studied:

- ⁶He⁺→⁶Li^{2+/3+} (2005-2010):
 - Pure GT
 - 100% GS→GS
 - Reasonable T_{1/2} = 806.7 ms
 - High $Q_{\beta} = 3.51 \text{ MeV} \rightarrow T_{RImax} \approx 1.4 \text{ keV}$
 - High production rate: 2 10⁸ ions/s @SPIRAL
 - Few nucleons = few radiative corrections

→ C. Couratin, et al.: Phys. Rev. Lett. 108, 243201 (2012) : measurement of the shake-off probability (electron emission during decay) : $p = 0.02339(35)_{stat}(07)_{syst}$

LPCTrap @ GANIL

Three ions studied:

- ³⁵Ar⁺ → ³⁵Cl (2011-2012):
 - Mirror transition
 - 98% GS→GS
 - Reasonable T_{1/2} = 1.775 s

- High Q_{β} = 2.28 MeV but high daughter mass \rightarrow Low T_{RImax} = 450 eV
- Neutral daughter nucleus + multiple charge states
- Good production rate: 3.5 10⁷ ions/s @ SPIRAL

→ C. Couratin et al., Phys. Rev. A 88, 041403(R) (2013) : good match of shake-off probability with theory

LPCTrap @ GANIL

Three ions studied:

- ¹⁹Ne⁺ → ¹⁹F (2013):
 - Mirror transition
 - 99.988% GS→GS
 - Long T_{1/2} = 17.26 s
 - Low $Q_{\beta} = 961 \text{ keV} \rightarrow \text{Low } T_{\text{RImax}} = 200 \text{ eV}$
 - Neutral daughter nucleus but only a few charge states (F^{+/2+/3+/...})
 - High production rate $\approx 3 \ 10^8$ ions/s @ SPIRAL

→ X. Fabian et al, Phys. Rev. A 97, 023402 (2018) : shake-off : current theory insufficient

Simulations

- Previous results dominated by two systematics:
 - Cloud temperature
 - β-scattering
- New software developed to improve both:
 - Clouda (cloud temperature)
 - + new data analysis scripts

Table 1. Dominant sources of systematic error, systematic uncertainties and impact on the error of $a_{\beta v}$. The last column indicates the method used to estimate the parameters.

Source	Uncertainty	$\Delta a_{\beta v}(\times10^{-3})$	Method
Cloud temperature	6.5%	6.8	Off-line measurement
θx_{MCPPSD}	0.003 rad	0.1	Present data
θy_{MCPPSD}	0.003 rad	0.1	Present data
MCPPSD offset (x, y)	0.145 mm	0.3	Present data
MCPPSD calibration	0.5%	1.3	Present data
d _{DSSSD}	0.2 mm	0.3	Present data
$E_{\rm scint}$	see text	0.8	Present data
$E_{ m si}$	10%	0.8	GEANT4
'Accidentals' and 'out trap'	See the text	0.9	Present data
β scattering	10%	1.9	GEANT4
Shake-off	0-0.05	0.6	Theoretical calculation
V _{RF}	2.5%	1.7	Off-line measurement
Total		7.5	

X. Fléchard *et al* 2011 *J. Phys. G: Nucl. Part. Phys.* **38** 055101

Simulations : Clouda

RF field Clouda software: Simulation of the ion cloud dynamics Massively parallel N-body simulation of interaction individual ions on H_{2} Trapping field + space ⁶He⁺ charge taken into Collisions account

X. Fabian: Precision measurement in the weak interaction framework: development of realistic simulations for the LPCTrap device installed at GANIL, PhD University of Caen

GPU

Simulations : Clouda

 Good match of cooling time (need to be crosschecked with other simulations)

• Good match of the effect of space charge

Simulation : Geant4 + SIMION

- External β-decay + shake-off generator
- Geant4:
 - Simulation of the electron propagation in LPCTrap
 - No field considered
- SIMION:
 - Simulation of the ion propagation in LPCTrap
 - Axisymmetric field considered

Data analysis

- 2-step analysis:
 - Python script for experimental data reading and calibration
 - ROOT macros for fit
- Analyzed systematics:
 - Buffer gas temperature
 - DSSD, MCP et collimators shifts
 - Scintillator response function (energetic + spatial)
 - Electrode voltage

Latest results

Scintillator calibration

Latest results

Latest results

- More simulation running to improve statistics
- Precise fit of *a* coming soon
- Expected uncertainty : 0.4% stat. + 1% syst.

Conclusion and prospective

- Data analysis in progress
 - Needs more ions simulated
 - Priority given to ⁶He data
 - ³⁵Ar and ¹⁹Ne should be analyzed before the end of the year
 - New simulation software being developed : Ouroboros-BEM
- He+H₂ differential cross-section measurement around 1 eV would be useful
- New beams @ SPIRAL: new mirror nuclei: ²¹Na, ²³Mg, ³³Cl, ³⁷K

Thank you for your attention

ISOL France – 03/17/2021 – Rodolphe Combe

Allowed transitions: ΔL = 0	Δπ = 1
Pure Fermi (F) transitions: ΔS = 0	$\Delta J = 0$
Pure Gamow-Teller (GT) transitions: $\Delta S = 1$	∆J = 0,±1
Forbidden transitions: ∆L ≠ 0	Δπ = (-1) ^L

Mixed transition: transition possible via F or GT

• Example: ${}^{21}Na (3/2^+) \rightarrow {}^{21}Ne (3/2^+)$

• Pure Fermi:
$$a_F = -\frac{1}{3} \frac{|C_A|^2 + |C'_A|^2 - |C_T|^2 - |C'_T|^2}{|C_A|^2 + |C'_A|^2 + |C_T|^2 + |C'_T|^2}$$

• Pure Gamow-Teller: $a_{GT} = \frac{|C_V|^2 + |C'_V|^2 - |C_S|^2 - |C'_S|^2}{|C_V|^2 + |C'_V|^2 + |C_S|^2 + |C'_S|^2}$
• Mirror transition (mixed) : $a_m = \frac{(1 - \rho^2/3)}{(1 + \rho^2)}$ with ρ the mixing coefficient GT/F \rightarrow determination of V_{ud} (alternative to $0^+ \rightarrow 0^+$)

• Standard model = V-A theory :

•
$$C_{S,T} = 0$$
, $C_i = C'_i$ real
 $\rightarrow a_{GT} = -1/3$, $a_F = +1$

State of the art: V_{ud}

Transition	V _{ud}	
Super-allowed pure Fermi	0.97420(10) _{exp} (18) _{RC}	
Neutron	0.9763(5) _{τn} (15) _{gA} (2) _{RC}	
Pion	0.9749(26)	
Super-allowed mirror	0.9719(17)	

PDG 2018 et Naviliat *et al* PR102 (2009)

LPCTrap : Paul trap

- Static 3D potential well = impossible

 → Quadripolar potential whose trapping and escape directions switch with time
 = Paul trap
- RF frequency depends on mass
 - LPCTrap : 0.48< f_{RF}<1.15 MHz
- Geometrical efficiency: 33% of 4π
- Capacity $\approx 10^5$ ions

LPCTrap : β-telescope

- Detection in coincidence :
 - Electron position = DSSSD
 - Electron energy = plastic scintillator
- DSSSD :
 - 2 x 60 1-mm strips (horizontal + vertical)
 - 300-µm thickness
 - Dead time ≈ 240 µs
- BC400 plastic scintillator
 - Time resolution: 200 ps
 - Energy resolution: $\approx 0.08/\sqrt{E}$
 - Threshold after cuts: 400 keV

LPCTrap : recoil ions spectrometer

- Ion acceleration with a
 -2-kV potential
 → charge separation
- Time of flight ↔ initial ion energy + initial ion position
- Sensor = MCP plate (STOP signal) + delay line (ion position)
 - Time resolution <200 ps
 - Spatial resolution
 ≈ 110 µm

Simulation : Ouroboros-BEM

- Ouroboros-BEM:
 - Simulation of the ion propagation in the LPCTrap electric field on GPU
 - External β-decay + shake-off generator
 - RF and static electric field considered
 - Still under development

Quick study of scintillator response function

Work with 500K low stat (best match for temperature)

- -Correction of light yield vs position (up to 10% difference)
- Adjustment on Etot to account for differences in Esi
- -Use of free birks parameter instead of offset
- -use of a quadratic term

RF warm-up

Axial vs Tensor

QDC cut

Formulas

$$\begin{aligned} \epsilon a_{\beta\nu} &= |M_F|^2 \left(|C_V|^2 + |C_V'|^2 - |C_S|^2 - |C_S'|^2 \right) \\ &- \frac{1}{3} |M_{GT}|^2 (|C_A|^2 + |C_A'|^2 - |C_T|^2 - |C_T'|^2) \\ \text{with } \epsilon &= |M_F|^2 \left(|C_V|^2 + |C_V'|^2 + |C_S|^2 + |C_S'|^2 \right) \\ &- \frac{1}{3} |M_{GT}|^2 (|C_A|^2 + |C_A'|^2 + |C_T|^2 + |C_T'|^2) \end{aligned}$$

For b close to 0, the effectively measured parameter is: $\tilde{a} = \frac{a}{1+\langle b' \rangle}$ avec $b' = \frac{m_e}{E_e} b$

Hamiltonian of β-decay:

$$\hat{H} = \frac{G_F}{\sqrt{2}} \sum_{i=V,A,S,T,P} (\overline{\psi_P} O_i \psi_n) (\overline{\psi_e} O^i (C_i + C'_i \gamma^5) \psi_v) + h.c.$$

Mirror transition:

$$Ft = f_V t_{1/2} (1 + \delta_R) (1 + \delta_{NS} - \delta_C) = \frac{2K}{V_{ud}^2 (1 + \Delta_R) \left(1 + \frac{f_A}{f_V} \rho^2\right)}$$