GPIB + PIPERADE apparatus

DESIR

DESIR

PIPERADE installed on a parallel beam line downstream reconnection to main beam line for high purification

A. Husson – ISOL France Meeting, 18th March 2021

CENBG - PIPERADE

• ISCOOL Mechanical design

- Larger $r_0=20$ mm for high-intensity beam
- New development : high U_{RF} , up to 4kVpp
- Frequency: 220kHz 2MHz
- Mathieu parameter q=0.6

• Beam cooling

- 3π mm.mrad @ 60keV
- 4.5π mm.mrad @ 30keV
- 10π mm.mrad @ 3keV

Two operation modes:

- CW mode:
 - Test and characterization with A=39/40
 - Intensity up to 10⁸pps (~20pA)
 - Transmission:
 - 80% @ 30 keV 92% @ 3keV

• ISCOOL Mechanical design

- Larger $r_0=20mm$ for high-intensity beam
- New development : high $U_{\mbox{\tiny RF}}$, up to $4k\mbox{\it Vpp}$
- Frequency: 220kHz 2MHz
- Mathieu parameter q=0.6

Beam cooling

- 3π mm.mrad @ 60keV
- 4.5π mm.mrad @ 30keV
- 10π mm.mrad @ 3keV

Two operation modes:

- CW mode:
 - Test and characterization with A=39/40
 - Intensity up to 10⁸pps (~20pA)
 - Transmission: 80% @ 30 keV 92% @ 3keV
- Bunching mode:
 - Beam gate implemented upstream of the GPIB
 - <u>Rep. Rate</u>: 1 100 Hz
 - Meas. bunch size :
 - Extraction 30keV : 0.7µs FWHM
 - Extraction 3keV : \sim 1-2 μs
 - \rightarrow Extraction potential to be optimized for bunch compression

• ISCOOL Mechanical design

- Larger $r_0=20mm$ for high-intensity beam
- New development : high U_{RF} , up to 4kVpp
- Frequency: 220kHz 2MHz
- Mathieu parameter q=0.6

Beam cooling

- 3π mm.mrad @ 60keV
- 4.5π mm.mrad @ 30keV
- 10π mm.mrad @ 3keV

Two operation modes:

- CW mode:
 - Test and characterization with A=39/40
 - Intensity up to 10⁸pps (~20pA)
 - Transmission: 80% @ 30 keV 92% @ 3keV
- Bunching mode:
 - Beam gate implemented upstream of the GPIB
 - <u>Rep. Rate</u>: 1 100 Hz
 - Meas. bunch size :
 - Extraction 30keV : 0.7µs FWHM
 - Extraction 3keV : \sim 1-2 μs
 - \rightarrow Extraction potential to be optimized for bunch compression
 - Meas. Energy spread : <10eV in 10ms \rightarrow Cooling sequence to be optimized

Remaining tasks:

- Effectiveness of the cooling:
 - Transverse emittance measurement @ 3keV/30keV
 - Longitudinal emittance improvement
- Bunching mode:
 - · Optimization of the GPIB extraction potential
 - Implement the slow and time focusing extractions
 - Ion stacking increase the number of ions per bunch
- RF system:
 - SPIRAL2-type control & EPICS compatible
 - Upgrade of the RF system towards $U_{RF} = 4kVpp$

Validation of the DESIR requirements before installation at GANIL

- PIPERADE double Penning trap,
 - 7T superconducting magnet
 - mass measurements /accumulation/beam purification (statistics increase for measurements)
- First trap Purification trap large inner radius (>10⁴ ions/bunch)
- 2nd trap Accumulation trap
 - used for measurements
- **TOF-ICR and PI-ICR detection** + study of purification methods + study of the charge space effects

Flexible purification adapted to DESIR requirements

- 7T superconducting magnet installed
- Shimming to optimize the field homogeneity on both trap regions, < 1 ppm for ~1cm3 volumes \rightarrow warm coil to compensate the magnetic field drift Δ B/B from 4.10⁻⁸/h to <1.10⁻⁹/h
- Installation of the full beam line and detection chamber downstream of the trap, \rightarrow MCP+FC detectors
- EPICS control system, beta version now operational
 - September 2020 First trapped bunch in PIPERADE
 - RF systems + switching electronics, operational
 - \rightarrow Bunches sent via GPIB,
 - daily trap operations
 - \rightarrow First magnetron excitation

- 7T superconducting magnet installed
- Shimming to optimize the field homogeneity on both trap regions, < 1 ppm for ~1cm3 volumes \rightarrow warm coil to compensate the magnetic field drift Δ B/B from 4.10⁻⁸/h to <1.10⁻⁹/h
- Installation of the full beam line and detection chamber downstream of the trap, \rightarrow MCP+FC detectors
- RF systems + switching electronics, operational
 - \rightarrow Bunches sent via GPIB,
 - \rightarrow First magnetron excitation
 - => beginning of more systematical studies

<u>Remaining tasks</u>:

- · Improve in-trap cooling + ion recentering
- · Implementation of the purification techniques:
 - Ramsey cleaning
 - PI-ICR cleaning \leftarrow installation of a dedicated position sensitive detector
- Transfert to 2nd trap.
- High-precision mass spectrometry: standard TOF-ICR/Ramsey and PI-ICR
- TRAP specific application software (Python-EPICS) to be developped, same scheme as the JYFLTRAP CC-software (Jyväskylä)

<u>Timeline</u>:

- Commissioning at CENBG + systematical studies : now 2023
- Move to DESIR :
- Installation/Commissioning at DESIR : 2024 2025
- First online experiment at DESIR : **2026**

Thank you

CENBG team

Physicists

P. Ascher, B. Blank, M. Gerbaux, S. Grévy

Intrumentation

P. Alfaurt, L. Daudin, B. Lachacinski

Mechanics (BE)

S. Perard

PostDocs

Antoine de Roubin, Audric Husson

PhD

Marjut Hukkanen

Deflector 90° extracted from PIPERADE beamline

Purchase of a Kimball alkaline ion gun

<u>Tests</u> :

- Transverse emittance conservation
- ≻ Energy conservation
 → no spread induced by deflection
- > Time spread negligible
- Operations at 3keV and max 5keV

Figure 1: schéma d'évolution proposé pour la ligne PIPERADE au CENBG.

A. Husson – ISOL France Meeting, 18th March 2021

A. Husson – ISOL France Meeting, 18th March 2021