

Status of PILGRIM

A Multi-Reflexion ToF Mass Spectrometer (MR-ToF-MS) for S3

P. Delahaye,

B. M. Retailleau, P. Chauveau and the S3-LEB team

S³ Low Energy Branch

See J. Romans, next session

Vers DESIR- Idenfification/détection

PILGRIM off-line commissioning at LPC Caen

Piège à lons Linéaire du GANIL pour la Résolution des Isotopes en Masse

Multi Reflexion Time-of-Flight Mass Spectrometer

Time-of-flight $t \sim d \cdot \sqrt{\frac{m}{2E}}$ $R = \frac{m}{\Delta m} \sim \frac{1}{2} \cdot \frac{t}{\Delta t}$

Where Δt is the **time spread** of the ion bunch after N turns in the trap

Resolving power: up to $R \sim 120.000$ Precision: $\frac{1}{R\sqrt{N}} \sim 7 \cdot 10^{-8}$ achieved For typical cycle times of 20 ms

Attained objectives:

- \checkmark testing mass models with mass measurements with better than 100 keV precision (~5.10⁻⁷ for A~200)
- \checkmark Separating isolbars with 10⁵ mass resolving power

Mass measurement tests performed during the PhD thesis of Blaise Maël Retailleau

Understanding the bunch formation

Double gaussian shape very well reproduced by SIMION simulations

- BNG yields 2 distributions in energy
- The main one, peaked in energy (±1.5 eV) is used for measuring masses and determining the resolving power of PILGRIM after trapping
- The second one corresponds to ions passing through the gate while it is opening/closing, exhibiting a much larger energy spread (±15 eV)

Characteristics of the bunch are similar to the one simulated from the S3-LEB RFQ cooler buncher

Second gaussian

Understanding the resolving power evolution

Eventual limitation comes from accumulation of 2^{nd} order geometrical aberrations $\Delta T_{f_{oc}}^2$

Attaining a mass accuracy better than 10⁻⁷

 $mc^2 = (a \times t + b)^2$ -3/2T Correction due to relativity!

• ⁸⁵Rb using ³⁹K and ²³Na as references

• ³⁹K using ²³Na and ⁸⁵Rb as references

Deviation ~1 σ_m reduced by 15% thanks to the correction!

PILGRIM

Piège à lons Linéaire du GANIL pour la Résolution des Isotopes en Masse

Mass separation, identification and mesurement for N=Z and very heavy nuclei produced at S3

P. Chauveau, P. Delahaye, et al., «PILGRIM, a Multi-Reflection Time-of-Flight Mass Spectrometer for Spiral2-S3 at GANIL,» *Nuclear Instruments and Methods in Physics Research B*, vol. 376, p. 211, 2016.

P. Chauveau, Design, simulations and test of a Time-of-Flight spectrometer for mass measurement of exotic beams from SPIRAL1/SPIRAL2 and gamma-ray spectroscopy of nuclei close to 100Sn. Thèse de l'Université de Caen Normandie., 2016.

B. M. Retailleau, PILGRIM : un spectromètre de masse par temps de vol pour S3 et brisure de la symétrie d'isospin dans le 38K. Thèse de l'Université de Caen Normandie., Février 2021.

Compact, affordable, precise and fast

We presently miss 3 turbo pumps! To continue the commissioning with beams from the S3LEB RFQs

Thanks a lot for your attention!

Backup

Understanding the resolving power evolution

Similar expression derived in eg. W. Plaß et al. IJMS 349–350 (2013)

Time-flight-focussing for n₀ laps

