The MORA Project

Matter's Origin from the Radioactivity of Trapped and Laser Oriented ions

Nishu GOYAL (on behalf of MORA collaboration)

AGENCE NATIONALE DE LA RECHERO

Physics Hypothesis-

- □ The MORA project focuses on the searches for new sources of CP violation
- **Gamma** Searches of New Physics in nuclear beta decay.
- D correlation parameter measurement with unprecedented precision.
- Use of an Innovative in-trap orientation method (high trapping efficiency of transparent Paul trap with laser orientation techniques)
- □ First time possibility to probe FSI (Final state interaction) effects.

Objectives & Project Focus

- □ Proof-of-principle of in-trap laser orientation techniques.
- D- correlation measurement in the decay of 23Mg+ ions at JYFL (2021-2023)
- D- correlation measurement at the future DESIR facility. Highest accuracy for measurements incl. neutron decay.(2024-..)

Sensitivity to New Physics:

 \rightarrow D correlation measurements in neutrons and nuclei

Best limits on T-violating phase $Im(C_V/C_A)$

Neutron decay, $D_n = (-0.94 \pm 1.89 \pm 0.97) \ 10^{-4} \ Im(C_v/C_s) < (1.6 \pm 6.3) \times 10^{-4}$

¹⁹Ne decay, $D=0.0001 \pm 0.0006$, limited by statistics

→ Sensitivity depends on the transition $D_{X} = F(X) \times Im(C_{V}/C_{A})$

→ Strong mixed (GT+fermi) transitions between analog states Alkali earth elements for in trap laser ion polarization.

	n	¹⁹ Ne	²³ Mg	³⁹ Ca
F(X)	-0.55	0.66	0.82	-0.90
D _{FSI}	1.2×10 ⁻⁵	1.5×10 ⁻⁴	1.2×10 ⁻⁴	-3×10 ⁻⁵

²³Mg and ³⁹Ca can be laser polarized as ions.
²³Mg well produced and laser polarized.

Measurement of D Correlation Parameter:

- □ The polarization along the trap axis by superimposing a circularly polarized laser beam with the injected ion beam.
- **B**-field alignment with helmholtz coil. The polarization is monitored by a difference of count rates in the two annular Si detectors.
- □ The *D* correlation is measured in the azimuthal plane of the trap by an emiT like arrangement of beta and recoil ion detectors.

 $D \propto \left(\frac{N_{(\beta_r \in [0, \pi])}^{(\theta_{er} \in [0, \pi])} - N_{(\beta_r)coin}^{(\theta_{er} \in [0, \pi])}}{N_{(\beta_r)coin}^{(\theta_{er} \in [0, \pi])} + N_{(\beta_r)coin}^{(\theta_{er} \in [0, \pi])}} \right)$

 (βr) coin (electron-recoil ion)

4

Trapping and detection setup of MORA

MORA Trap:

3-D transparent Paul trap fixed in the centre of MORA chamber, characterized by a large potential depth and wide trapping region which leads to an increase of the storage time and better trapping efficiency

Place and type of measurement	Trapped ions /s	Decays/s	Meas. time (d)	Detected coinc. (P)	σ_P/P stat (%)	Detected coinc. (D)	Sensitivity on D
JYFL: polarization degree	1.00E+04	6.13E+02	8	1.7E+05	1.9E+00	1.5E+06	1.0E-03
JYFL: D correlation	1.00E+04	6.13E+02	32	6.7E+05	9.4E-01	6.1E+06	5.2E-04
DESIR: D correlation*	5.00E+05	3.07E+04	24	2.5E+07	1.5E-01	2.3E+08	8.5E-05
DESIR: D correlation**	5.00E+06	3.07E+05	24	2.5E+08	5E-02	2.3E+09	2.5E-05

Expected number of trapped ions per cycle & sensitivity on D & P at JYFL and GANIL

Detection setup of MORA

• (β-recoil coincidences)

Phoswich for betas: Combination of 2 plastic scintillators ΔE: thin (0.5 mm) & fast (t = 1.8 ns) "Q_fast" (connected to a common PMT) E: thick (5 cm) & slow (t = 285 ns) "Q_slow"

Test bench @LPC,Caen dedicated for phoswich testing

Phoswich Response Function:

Various IC electrons : 481.7 keV (1.5%), 556.9 keV (0.6%), 994.6 keV (9.4%) 1682.2 keV (0.02%)

Some gamma rays: 570 keV (97.76%), 1063 keV (74.5%), 1770 keV (6.87%)

207Bi source in geant4 database

$$E_{tot} = \Delta E_{fast} + \Delta E_{slow} = \alpha Q_{fast} + \beta Q_{slow} = \beta Q_{tot} + (\alpha - \beta) Q_{fast}$$

Simulation vs Data

Detection setup of MORA

(β-recoil coincidences)

Recoil-ion Detectors(RIDE):

- **5 signals:** charge emitted by MCPs, charge collected on anodes (z1,z2,y1,y2)
- **3 Polarization Voltages:** front MCP, back MCP=reflection electrode, anode

MCP detectors equipped with-

- □ 90% transmission grid
- □ 4 KeV acceleration from Grid tO MCP to reach the efficiency plateau.
- Resistive PSA (Position Sensitive Anode) collecting electrons from the MCP.

RIDE Raw Image Construction:

Detection setup of MORA

• Polarization degree Measurement

SI Detectors for polarisation Degree Monitoring:

Beam line testing and Simulation (Preparation for the move to JYFL)

- SIMION simulations for MORA beamline are currently in progress.
- Testing yet to be done.. (We expect to start the beam line testing by the beginning of month May..)

New Perspectives with MORA Project:

- Finishing the tests of the detectors and the beamline at LPC,Caen & GANIL. (June,2021)
- Moving to JYFL (July,2021)
- Proof of Principle of Polarization and first Measurement of D correlation parameter at JYFL.(Dec,2021-2023)
- Higher Accuracy approach with D correlation measurement in future DESIR facility,
 - Expected improvement of 1 order of magnitude on the sensitivity to Im(Cv/CA).
 - Probing new Physics beyond the level predicted in Standard Model in TeV scale,
 - Probing of Final state Interaction effects in the case of 23Mg.

MORA setup

D1 hyperfine transition used to orient the spin of 23Mg+ ions (~280 nm)

Extended interaction time with laser light Very high polarization degree >90%: enough for the measurement of D! Degree of polarization estimated to more than 99% after 0.2 ms of trapping time

 $\frac{N_{\beta^+}^{\uparrow} - N_{\beta^+}^{\downarrow}}{N_{\beta^+}^{\uparrow} + N_{\beta^+}^{\downarrow}} \propto A_{\beta} \cdot P$

 $A_{\beta} \frac{\langle \vec{J} \rangle}{I} \cdot \frac{\overrightarrow{p_e}}{E_e}$

C. S. Wu et al., Phys Rev 105(1957)1413

