Suite « mission Spiro »

P. Delahaye, on behalf of WG2 & 3 electron probe and reacceleration

Future of GANIL: schedule

- IN2P3 Prospectives: Feb. 2020, Abbaye aux Dames •
- Future of GANIL (with CEA): Lols submitted in April 2020 •
- Available info on https://indico.in2p3.fr/event/20534/ •
 - May 2020: Analysis of the collected contributions
 - June 9th: 1st meeting of the International Expert Committee
 - June 25th: Presentation to the GANIL CODIR of the International Expert Committee analysis
 - Decision taken to build 2 working groups
 - 1/ Interdisciplinary hall (G. de France et al.)
 - 2/ Electromagnetic probe (V. Lapoux et al.)
 - September: kick-off meeting of the Working groups.
 - November 12-13th 2020: Meeting to discuss the progresses of the working groups
 - December 1st: Working groups reports: Electromagnetic Probe and Interdisciplinary Hall
 - December 3rd: 2nd meeting of the International Expert Committee. Presentation of the Working Groups Conclusions

We go there!

- Discussions show the need for 2 additional working groups
- 3/ Acceleration of exotic beams (S. Gales et al.)
- 4/ Futur of cyclotrons for interdisciplinary research (N. Moncoffre et al.)
- December 2020: Meeting with CNRS and CEA directions
- December 18th: Presentation to the GANIL CODIR of the International Expert Committee conclusions
- 2021
- March: Reports of the additional working groups
- March: Reports of the additional working groups April: 3rd meeting of the International Expert Committee. Presentation of the Working Groups Conclusions
- May: Final report of the International Expert Committee
- June: Presentation of the International Expert Committee conclusions to the GANIL CODIR
- June: Presentation of the conclusions to CNRS and CEA directions

WG2 & 3: electron probe and reacceleration

These are the 2 options proposed by the community of GANIL for Nuclear Basic Science!

Both options based on the same ISOL consolidated production capabilities

GANIL-SPIRAL2 as a Multifaceted Radioactive Ion Beam Facility, P. Delahaye et al., https://indico.in2p3.fr/event/20534/contributions/81850/

What beams?

Facility	Beams	Reaction mechanism	When	Comments
SPIRAL 1	A<80, intensities up to ~10 ⁹ pps	Fragmentation	Many are ready, some to develop	Fusion evaporation possible (TULIP)
S3-LEB	Mid-heavy to heavy neutron deficient beams A >40 → ~270 Intensities up to 10 ⁶ pps	Fusion evaporation	Starting on-line development as of 2023	
Gas cell/ production cave with A/q=7	Light to heavy (N=126) neutron rich beams, with intensities up to 10 ⁵ ?pps	Multinucleon transfer	 * After A/q is ready > 2027 * ideally in the production building ~2030? 	See contribution of C. Theisen
Fission fragments from LINAC	70 <a<150 intensities<br="" with="">up to ~10⁹ pps</a<150>	Fusion reactions Light particle induced fission (p,d,3He,4He)	Production building, ~2030?	See contribution of Delahaye et al.
Fission fragments from Rhodotron	70 <a<150 intensities<br="" with="">up to ~10⁹ pps</a<150>	Photofission à la ALTO	Production building, ~2030?	

A deeper look into the production building

A/q=7 beams: NEWGAIN EQUIPEX accepted

Gas cell for reactions with A/q=7 beams

Making full use of A/q=7 beams

- Trans-lead and Actinide production
- \succ Light (A \lesssim 50) neutron rich beams from MNT

RFQ injector A/Q = 7 for the production of exotic nuclei using fusion-evaporation and multinucleon transfer reactions, C. Theisen et al., <u>https://indico.in2p3.fr/event/20534/contributions/81871/</u>

Rhodotron: an independant « on-off » driver

- Less competition for beam time with the LINAC
- Grants DESIR ambitious program with fission fragments

A deeper look into the production building

All of this would a priori fit in the original cave foreseen for SPIRAL 2 phase 2

Rhodotron: an independant « on-off » driver

- Less competition for beam time with the LINAC
- Grants DESIR ambitious program with fission fragments

A/q=7 beams: NEWGAIN EQUIPEX accepted

Gas cell for reactions with A/q=7 beams

Making full use of A/q=7 beams

- Trans-lead and Actinide production
- \succ Light (A \lesssim 50) neutron rich beams from MNT

RFQ injector A/Q = 7 for the production of exotic nuclei using fusion-evaporation and multinucleon transfer reactions, C. Theisen et al., <u>https://indico.in2p3.fr/event/20534/contributions/81871/</u>

Electromagnetic probe

A microscope on nuclear densities

Goal: luminosities $\gtrsim 10^{28}$ cm⁻²s⁻¹

at least x10 compared to SCRIT, with radioactive ions

(e,e), (e,e') reactions (e,e'p) require 10³⁰ cm⁻²s⁻¹

First ion trapping study shows that:

- An ion beam radius of ~100 200μm is already around the achievable physical limit because of electron heating
- An electron beam intensity of $\gtrsim 200$ mA is desired to achieve the luminosity objective

A synchrotron is a preferred solution a priori

- Achievable performances with readily existing technology (eg. SOLEIL 500mA)
- High current for ERL (eg. PERLE aims at 20 mA)

Report sent to the committee: V. Lapoux et al. , *Electron scattering on radioactive ions at GANIL*, <u>https://indico.in2p3.fr/event/20534/attachments/57082/85464/WG_EP_Dec2020v.pdf</u> Original LoI: https://indico.in2p3.fr/event/20534/contributions/81059/

Reacceleration

Reacceleration of RIBS up to Fermi energies

- Nuclear equation of State
- Accessing the isovector parameters of the EOS via heavy ion collisions and geant resonances with exotic RIBs
- Nuclear shell evolution away from stability
- Coulex for probing deformation, (p,t) for pairing, study of Pygmy Dipole resonance transfer reactions and and pairing, fissionning system studies

3 options for reacceleration

- LINAC + CSS1 + CSS2
- Superconducting cyclotron from IBA
- Superconducting LINAC

	CSS upgrade	Superconducting	Superconducting
	with LINAC injector	Compact Cyclotron	LINAC
Cost of accelerator	25	70-80	100
Cost Accelerator building	5	5	20
Main advantage	lower cost	compact	Upgrade possible flexibility
Main problem	- CSS ageing -33MeV/A max for ¹³² Sn	New Design effort	Manpower cost

EBIS + ECRIS Charge breeding

Report in preparation: S. Galès et al. , *Post-Accelerated Radioactive Ion Beams*, to be sent these days to the committee Original LoI: N. Le Neindre et al. *Reacceleration of radioactive ion beams at GANIL*, <u>https://indico.in2p3.fr/event/20534/sessions/13351/</u>

Overview

- SPIRAL 2 phase 2 was estimated between **80 M€** (end of 2012) and **150 M€** (GANIL 2025 initiative, in 2015)
- Includes 45 M€ for the production building, in which all the processes shown here are a priori fitting

Electromagnetic probe ~12 years

- Overall cost ~150 M€, including the electron machine ~100 M€
- ~12 years: 4 for R&D, Design, 8 for construction
- Synchrotron preferred, role for PERLE?
- Reacceleration ~ 10 years with variations according to the option
 - 3 options with very different costs and capabilities
 - ~30M€ for existing CSS, cost effective, but range limited in energy
 - 80M€ for SuperConducting Cyclotron, full preservation of existing facilities is a priori possible (inc. CIME), design efforts on IBA side
 - 120 M€ for LINAC, highly flexible, but new experimental areas to build
- A detailed study for each of these options is highly desired for the coming year(s)
- The realization of whole project is only possible in the frame of an internationalisation of GANIL
- Next steps are the meeting of the WG with the committee in April, and final report of the committee in May

