

Semileptonic Vector Boson Scattering at the ATLAS Detector and Planar Pixel Sensors for the ATLAS ITk

CAT Student Seminar

Tobias Fitschen

2021-05-10

Why study VBS?

There is no such thing as a VBS/VBF measurement on its own!

Gauge invariant set of Vjj/ VVjj diagrams at $\mathcal{O}(\alpha_W^3)$ / $\mathcal{O}(\alpha_W^4)$ tree level:

- Negative interference between VBS/VBF and weak boson bremsstrahlung
- Instead: measure electroweak (EW) production of Vjj and VVjj
- In this presentation: Semileptonic VVjj

The ATLAS Detector

Common experimental signature of VBS events:

- Dijet system jj with large invariant mass m_{jj}
- Different sides/hemispheres of the detector
- Large angular separation

3

Semileptonic VBS

Analysis Goals:

- Measure EW VVjj
- Cross-section in fiducial region
 - \rightarrow Differential if possible
- EFT interpretation
 - \rightarrow Search for aQGC
 - \rightarrow Sensitivity in high $p_{\rm T}$ needed

Final State:

- 2 tagging jets:
 - Forward Opposite Hemispheres
- 1 boson decays hadronically:

2 R = 0.4 signal jets (resolved) or 1 R = 1.0 signal jet (merged)

resolved

- merged
- 1 boson decays leptonically:

0-lepton: $Z \rightarrow \nu\nu$ **1-lepton**: $W \rightarrow \ell\nu$ **2-lepton**: $Z \rightarrow \ell\ell$

Previous Analysis

August 2019: Previous Analysis with 35.5 fb⁻¹: Phys. Rev. D 100, 032007

- Simultaneous max-likelihood fit on BDT outputs in all SRs and CRs
- Cross-section measurement in fiducial region

- Signal strength: $\mu_{\text{EWVVjj}}^{\text{obs}} = 1.05 \pm 0.20(\text{stat})_{-0.34}^{+0.37}(\text{syst})$
- Significance: $n_{\sigma}^{obs} = 2.7, \ n_{\sigma}^{exp} = 2.5$

0-Lepton Event Selection

Pileup reduction:

- Pileup affects tracker and calorimeters differently
- ightarrow Exclude events with small $E_{\mathrm{T}}^{\mathrm{miss, track}}$ magnitude
- $\label{eq:and_states} \begin{array}{l} \rightarrow \mbox{ And with } E_{T}^{miss,track} \mbox{ in different} \\ \mbox{ direction in } \Phi \mbox{ than } E_{T}^{miss} \end{array}$

QCD multijet rejection:

- No reliable Monte Carlo for QCD background available
- Must be reduced in data
- QCD events typically only pass *E*^{miss}_T selection if single mismeasured jet j contributes significantly to *E*^{miss}_T
- ightarrow Small distance $\Delta \Phi$ of j to $\mathit{E}_{\mathrm{T}}^{\mathrm{miss}}$

Two approaches for MVA final discriminant:

- **Baseline:** Full selection (tag jets & signal jets), multi variate analysis on high level variables
- RNN approach: Only signal-, no tag-jet selection, rely on recurrent neural network (RNN) with four-vecor input from all jets to distinguish VBS from non-VBS

ightarrow Most events added by RNN approach do not have reconstructed tag-jets

Summary & Outlook

Semileptonic Vector Boson Scattering at the ATLAS detector

Summary:

- Previous analysis significance: $n_{\sigma}^{obs} = 2.7$ at 35.5 fb⁻¹
- New study with 139 fb^{-1} in progress:
 - Cross section measurement of semileptonic EWK VVjj in fiducial region
 - aQGC study with EFT approach in progress
 - Studies on signal composition (VBS/ non-VBS contributions)
 - Two approaches for MVA final discriminant:
 - Baseline: full selection (tag jets & signal jets) and then BDT or NN
 - RNN approach: only signal-, no tag jet selection, then RNN
 - Novel RNN approach must be verified against baseline

Goal:

• Obtain 5 sigma observation of the VBS process in semileptonic final state

Part II: Planar Pixel Sensors for the ATLAS ITk

LHC Upgrade

- LHC will be upgraded to High-Luminosity (HL-LHC)
- pprox 60 ightarrow 200 interactions per bunch crossing
- · Current inner detector must be upgraded to satisfy new requirements

The ITk Detector

Inner Detector (ID) will be replaced by full-Si Tracker (ITk):

- Has to be able to survive the harsh radiation environment of the HL-LHC
- Increased coverage up to 4 η with at least 9 points per track
- Outer Part: Si-strip detectors:
- Inner Part: 5 layers of Si-pixel detectors (covered in this talk):
 - Inner layer (L0): 1188 3D sensors (150 $\mu m)$, 34 mm from beam
 - Outer layer (L1): 1200 planar sensors (100 μ m)
 - Outer barrel and endcap (L2-4): 6816 planar sensors (150 μ m)

Current pixel system

~1.9 m² of active area 2000 modules 92 Mega-pixels

New ITk pixel system

~13 m² of active area 9400 modules 1.4 Giga-pixels

Planar Sensors

Layers L0-4 equipped with planar sensors:

- Outer layer (L1): 100 μ m thickness
- Outer barrel and endcap (L2-4): 150 μm thickness
- Pixel size of 50x50 μm²
- L2-4 expected to survive full amount of irradiation corresponding to 4000 fb⁻¹
- L1 replaced once $(\rightarrow 2000 \text{ fb}^{-1})$

Testing Campaign:

- Visual inspection
- Electrical measurements
- Beam tests

Planar Sensors

Single (SC), Double (DC), and Quad (QC) layouts

- Prototypes from various different foundries tested
- Final modules will all be quads

Visual Inspection

Visual inspection requirements:

- No stains, residues, scratches
- No chips > 40 μ m at edges
- No shorts between pixels
- Thickness and planarity requirements

Results:

• Most sensors show no visual defects, some exceptions

Electrical Characterization

Requirements for Qualification:

- Depletion voltage $V_{
 m dep} < 100$ V (for 150 μ m sensors) measured at 1 kHz
- Leakage current $I_{\text{leak}} < 0.75 \ \mu\text{A}/\text{cm}^2$ at $V_{\text{dep}} + 50 \ \text{V}$
- Variation of leakage current $\Delta \mathit{I}_{\mathsf{leak}} < 25\%$ measured over 48 h
- Breakdown voltage $V_{\text{break}} > V_{\text{dep}} + 70 \text{ V}$ (V_{break} defined as V at which I_{leak} increases by > 20% over $\Delta V = 5 \text{ V}$ step)

Beam Tests

Hit effiecincy measurements at DESY test beam facility:

- Modules: Planar sensor bump-bonded to RD53 front end chip
- Unirradiated and irradiated to two fluences
- 3 measurement campaigns at DESY: Sep and Nov 2019, Jun 2020
- At least one measurement per vendor per fluence per thickness

	-		
	Measurement voltage	Fluence	Hit Efficiency
100 and 150 um thickness	Vdepl+50V	Before irradiation	>98.5%
100 um thickness	300V 400V	$F=2x10^{15} n_{eq}/cm^2$. $F=5x10^{15} n_{eq}/cm^2$,	>97%
150 um thickness	400V 600V	F=2x10 ¹⁵ n _{eq} /cm ² , F=5x10 ¹⁵ n _{eq} /cm ² ,	>97%

Requirements on sensor efficiency:

Summary

Planar Pixel Sensors for the ATLAS ITk

ATLAS Inner Detector will be replaced with full-Si ITk:

- 1188 3D sensors at high-radiation inner layer
 - Pre-production started
 - 50 imes 50 μ m and 25 imes 100 μ m layout
- 8016 planar sensors in outer layers
 - 50 imes 50 μ m layout
 - Extensive Market Survey to qualify vendors
- Production for both sensor types forseen for mid 2022 mid 2024
- QA/QC ongoing during pre-production and production
- Both type of sensors demonstrated necessary requirement for ITk

Additional Material

VBS/VBF at **ATLAS**

Baseline selection MVA:

- Simple feed-forward NN
- Using high-level input variables
- Tag-jet selection for VBS-like events
- But some VBS-like events lost by this

No-tag selection RNN:

- Dropping selection on *j*^{tag}
- Full jet four-vectors as inputs in addition to high level variables
- Recurrent architecture (RNN) allows variable input length
 - Here: Each event has a different number of jets
- Rely on RNN to learn VBS-specific jet configuration

Fiducial Selection:

Object definition:

- ℓ^{good} : μ / e^{truth} with $p_T > 20$ GeV and $|\eta| < 2.5$
- ℓ^{veto} : μ/e^{truth} with $p_T > 7$ GeV and $|\eta| < 2.5$
- R=.4 jets j: j^{truth} with (ρ_T > 20 GeV and $|\eta| < 2.5$) or (ρ_T > 30 GeV and $|\eta| < 4.5$) and $\Delta R(\ell^{good}) > 0.2$
- R=1. jets J: J^{truth} with $p_T > 200$ GeV and $|\eta| < 2$
- b-labeled jet j_b: j with 'HadronConeExclTruthLabelID' = 5
- tag jets: highest-mass (jj) system from all j with eta(j1) * eta(j2) < 0 and not b-labeled
- resolved sig jets (jj)^{sig}: two leading p_T j excluding jj^{tag}
- merged sig jet J^{sig} : leading- $p_T J$ with $\Delta R(i^{tag}) > 1.4$

Channel selections:

- O-lepton:
 - ∉_T > 200 GeV == 0 ℓ^{veto}

 - 0 or 2 b-tagged i^{sig}, no other
- 1-lepton:

 - $\stackrel{'}{==} 1 \ell^{\text{good}}$ $p_T(\ell^{\text{good}}) > 27 \text{ GeV}$
 - no b-labeled jets
- 2-lepton:

• == 2 ℓ^{good}

- $p_{T}(\ell_{lead}^{good}) > 28 \text{ GeV}$
- $p_{T}(\ell_{sub-lead}^{good}) > 20 \text{ GeV}$
- 0 or 2 b-labeled j^{sig}, no other

Regime Definitions:

- merged: l^{sig} has 64 < m < 106 GeV
- resolved: $(jj)^{sig}$ has 64 < m < 106 GeV and $p_T(j_{load}) > 40$ GeV

Selection order (VBSFidType):

VBSFidType	channel	regime
0	0-lepton	merged
1	0-lepton	resolved
2	1-lepton	merged
3	1-lepton	resolved
4	2-lepton	merged
5	2-lepton	resolved

Tag iet selection (passFidMiiTag):

- p_{T} of both $i^{tag} > 30$ GeV
- $m(ii)^{\text{tag}} > 400 \text{ GeV}$

Number of signal events after various extra selections to reduce non-VBS signal:

baseline selection:

	merged HP SR					merged L	P SR		resolved SR			
selection	events	% fid.	% t	% V	events	% fid.	% t	% V	events	% fid.	% t	% V
nominal	68	43	10	4	114	40	12	5	1339	23	28	5
nominal+topMass	58	46	7	4	94	45	8	4	717	31	14	4
nominal+bVetoExcl	62	46	6	4	103	44	8	5	1197	25	22	5
nominal+bVetoExcl+topMass	55	48	5	3	88	47	6	4	683	32	12	4
nominal+bVetoExcl+bVetoSig	56	48	4	4	92	46	5	5	972	29	13	6
nominal+bVetoExcl+bVetoSig+topMass	50	50	4	4	80	49	4	4	588	35	7	5

no-tag selection:

	merged HP SR					merged L	P SR		resolved SR			
selection	events	% fid.	% t	% V	events	% fid.	% t	% V	events	% fid.	% t	% V
nominal	130	23	25	15	233	20	28	15	2809	11	43	12
nominal+topMass	100	28	17	13	167	26	19	13	1253	19	27	10
nominal+bVetoExcl	105	28	14	16	185	25	16	16	2197	14	32	23
nominal+bVetoExcl+topMass	86	32	10	13	144	30	12	14	1096	21	31	10
nominal+bVetoExcl+bVetoSig	92	30	10	16	159	27	11	17	1680	17	20	15
nominal+bVetoExcl+bVetoSig+topMass	77	34	7	13	125	32	8	14	894	24	13	11

Extra cuts:

- **topMass:** $m_t > 200$ GeV where m_t : mass of $(jj)^{sig}$ + additional jet (triplet closest to SM top mass)
- **bVetoExcl:** no R= .4 jet (excl. sig jets) b-tagged
- **bVetoSig:** == 0 or 2 signal jets b-tagged

Fractions:

- % fid: Fraction of events passing fiducial selection (resolved + merged combined)
- % t: Fraction of events that have a top in the diagram (truth info)

Reweighting

 $m(jj)^{tag}$ reweighting in 0-lepton:

- Well-known mismodeling in Sherpa W/Z+jets samples
- Common issue among VBS/VBF analyses
- m(jj)^{tag} reweighting derived in 1-lepton/2-lepton (W/Z) CR too strong for 0-lepton
- Independently deriving W and Z reweightings in 0-lepton CR reduces slope substantially

Procedure:

Fit ratio of $W/Z{\rm +jets}$ to data - all other MC

Shape systematics (0-lepton):

- Shape systs. from ratio of shape in Sherpa (nominal) and MadGraph (syst)
- Normalized to MadGraph
- Rebinned (from right to left: merge bins with < 50 events)
- Two options: With and without m(jj) reweighting in Sherpa

W+jets:

Shape systematics (0-lepton): Z+jets: merged HP SR merged LP SR

ATLAS work in progress

ATLAS work in progress

resolved SR

Olep Cut Flow

	mer	ged H	P SR		\rightarrow n	nerged	LP SR			\rightarrow res	olved SI	R		
cut	all MC	signal	background	s/b	01	I SIMO	simul	backeround	1.10	out	ALMC .	signal	background	s/b
AI	15242638.1	10184.6	15232453.5	0.001	A	15240230.6	10132.3	15230098.3	0.001	AI	15234445.9	10098.1	15224348.8	0.001
ET Trigger	15242638.1	10184.6	15232453.5	0.001	P ^{miss} Towner	15240230.6	10132.3	15230098-3	0.001	Emiss Trigger	15234445.9	10096.1	15224348.8	0.001
$N(j^{tag}) \ge 2$	9347195.5	7421.3	9339774.2	0.001	$N(L^{Lag}) > 2$	9344788 1	7769.1	9117419.0	0.001	$N(f^{rag}) \ge 2$	9339004.4	7334.9	9331669.5	0.001
$\rho_T(j_{had}^{Lag}) > 30 \text{ GeV}$	9295480.3	7400.0	9255080.3	0.001	$p_{\tau}(l^{Lag}) > 30 \text{ GeV}$	9293072.9	7347.8	9205725.1	0.001	$P_T(h_{red}^{Lag}) > 30 \text{ GeV}$	9287289.2	7313.6	9279975.6	0.001
$\rho_T(j_{sublead}^{tag}) > 30 \text{ GeV}$	6718390.2	6357.9	6712032.3	0.001	$p_{\pi}(i^{\text{tag}}) > 30 \text{ GeV}$	6715902.8	6305.7	6709677.1	0.001	$P_T(j^{Lag},,) > 30 \text{ GeV}$	6710199.0	6271.5	6703927.5	0.001
$E_T^{miss} > 200 \text{ GeV}$	2270267.2	2983.8	2267283.4	0.001	E ^{miss} > 200 GeV	2257859.8	2931.6	2254928.2	0.001	$E_T^{HIRE} > 200 \text{ GeV}$	2252075.0	2097.4	2259178.6	0.001
#Track > 50 GeV	2064763.9	2674.7	2052089.2	0.001	g ^{miss,track} > 50 GeV	2002356.5	2622.5	2059734.0	0.001	£ ^{miss,track} > 50 GeV	2056572.8	2588.3	2053984.5	0.001
$ \Delta \Phi(E_T^{miss}, E_T^{miss,track}) /\pi < \frac{1}{2}$	2018550.4	2566.0	2015904.4	0.001	$ \Delta \Phi(E_{\pi}^{miss}, E_{\pi}^{miss, track}) /\pi < \frac{1}{\pi}$	2016142.9	2513.7	2013629.2	0.001	$ \Delta \Phi(E_{\tau}^{miss}, E_{\tau}^{miss, track}) /\pi < \frac{1}{2}$	2010359.2	2479.6	2007879.7	0.001
$\min\{ \Delta \Phi(E_T^{miss}, j_i^{malR}) \}_i / \pi < \frac{1}{6}$	1205141.7	1521.0	1284620.8	0.001	$\min\{ \Delta \Psi(E_{miss}^{miss}, E_{malR}) \}_{\ell}/\pi < 1$	1203734.3	1468.7	1202265.6	0.001	$\min\{ \Delta \Phi(E_{\pi}^{miss}, j_{i}^{malR}) \}_{i}/\pi < \frac{1}{k}$	1277950.6	1434.5	1276516.0	0.001
$N(J) \ge 1$	118538.2	284.9	118253.3	0.002	$N(J) \ge 1$	116130.8	212.7	115098.1	0.002	$ \Delta \Psi(E_{mins}^{mins}, ii) /\pi < 1$	1203645.3	1306.4	1202258.9	0.001
$ \Delta \Phi(E_T^{max}, J) /\pi < \frac{1}{2}$	115133.3	274.1	114859.2	0.002	$ \Delta \Phi(E^{miss}, J) /\pi < \frac{1}{2}$	112725.8	221.9	112504.0	0.002	$N(I^{6}8) > 2$	723072 8	1167.2	771975 7	0.002
$\rho_{T}(J) > 200 \text{ GeV}$	115133.3	274.1	114859.2	0.002	$p_{-}(J) > 200 \text{ GeV}$	112725.8	221.9	112504.0	0.002	- (ME) > 10 CAL	Fenera 1	1000.0	547533.3	0.000
$ \eta(J) > 2.0$	115133.3	274.1	114859.2	0.002	m(J) > 50 GeV	47037.7	143.4	45394.3	0.003	PTU lead) > 40 Gev	200032.1	1009.0	201382.1	0.002
20(3) > 50 GeV	49445.2	195.7	49249.5	0.004	D2FatJet3Var	34852.1	114.5	34737.6	0.003	$\rho_T(j_{mbland}^{eq}) > 20 \text{ GeV}$	568652.1	1059.0	567583.1	0.002
Tunned at lat2Var	5377.2	71.6	5305.7	0.013	TaggerFatJet3Var	13743.9	69.8	13674.2	0.005	$m(jj)^{6}g > 50 GeV$	518234.0	1020.8	517213.2	0.002
N(1 ^b) - 0	1075.0	54.0	1020.1	0.015	$N(j^{D}) = 0$	7842.3	39.1	7803.2	0.005	$N(j^{b}) = 0$	387375.8	639.9	386735.9	0.002
$m(j)^{126} > 400 \text{ GeV}$	2407.4	52.2	2355.2	0.022	$m(jj)^{Lag} > 400 \text{ GeV}$	5783.7	34.2	5749.5	0.005	$m(jj)^{Lag} > 400 \text{ GeV}$	262707.3	531.4	262175.9	0.002

\rightarrow	me	rged	HP CR		\rightarrow	merge	d LP	CR		\rightarrow	reso	olved	CR	
	all MC	éged	background	4,0	0.6	I al MC	sizeal	background	1.65	oz	all MC	signal	background	1.45
AI	14971739.6	9996.7	14962172.9	0.000	Al	14971196.5	446.5	14961630.9	0.000	Al	14970754.1	9554.9	14961189.3	0.000
T Trigger	14971739.6	9556.7	14962172.9	0.000	ET Trigger	14971196.5	9555.6	14951630.9	0.000	ET Trigger	14970754.1	9554.9	14951189.3	0.001
$N(j^{Gag}) \ge 2$	9076297.1	6803.5	9069493.6	0.000	$N(r^{24}) \ge 2$	9075754.0	6802.3	9068951.6	0.001	$N(r^{24}) \ge 2$	9075311.6	6001.6	9068510.0	0.005
$P_T(j_{had}^{eq}) > 30 \text{ GeV}$	9024581.9	6782.2	9017799.6	0.000	$P_T(L^{Log}) > 10 \text{ GeV}$	9024038.8	6781.0	9017257.7	0.005	$P_T(f^{EAR}) > 10 \text{ GeV}$	9023595.4	6780.3	9016416.1	0.001
$P_T(j_{sublead}^{Lag}) > 30 \text{ GeV}$	6447491.7	\$740.1	6441751.6	220.0	$P_T(i^{Tag}) > 30 \text{ GeV}$	6446948.6	\$738.9	6441209.7	0.005	$P_T(i^{Lag}, i) > 30 \text{ GeV}$	6446505.3	\$738.2	6440758.0	0.005
$E_T^{min} > 200 \text{ GeV}$	1999358.7	2356.0	1997002.7	220.0	E= > 200 GeV	1998825.6	2354.8	1996450.8	0.005	E > 200 GeV	1998383.2	2354.1	1996019.1	0.005
$E_T^{misc,track} > 50 \text{ GeV}$	1793855.5	2056.9	1791808.6	220.0	Emission > 50 GeV	1793322.4	2055.7	1791255.5	0.005	E ^{misctock} > 50 GeV	1792890.0	2055.0	1790825.0	0.005
$ \Delta \Phi(E_T^{miss}, E_T^{miss, Disc}) /e < \frac{1}{2}$	1747651.9	1940.1	1745703.8	220.0	LANCEMING EMISSIONACK VICE - 1	1747108.8	1947.0	1745161.0	0.001	At (Emiss, Emiss, track) / # < 1	1746666.4	1946.3	1744720.2	0.005
$min\{ \Delta \Phi(E_T^{minx}, j_i^{mailR}) \}_i / \epsilon < \frac{1}{6}$	1015243.3	903.1	1014340.1	0.000	min{ Attentist_femalik] };/# < 1	1014700.2	902.0	1013798.2	0.005	$min\{ \Delta\Phi(E_{\pi}^{minx}, f^{mailR}) \}_{1}/e < 1$	1014257.8	901.3	1013355.5	0.005
$ \Delta \Phi(E_T^{max}, J) / \pi < \frac{1}{2}$	907416.9	820.0	906607.0	220.0	$ \Delta \Phi(E^{mixs}, J) /\pi < \frac{1}{2}$	906873.8	909.9	905055.0	0.005	$ \Delta \Phi(E_{\pi}^{miss}, j) / \pi < \frac{1}{2}$	940082.4	853.4	939229.1	0.001
$N(J) \ge 1$	62179.0	110.4	62068.7	0.002	N(J) > 1	61635.9	109.2	61525.8	0.002	N/461 > 2	459712.2	634.9	459077 3	0.000
$p_{T}(J) > 200 \text{ GeV}$	62179.0	110.4	62068.7	0.002	PT(J) > 200 GeV	61635.9	109.2	61526.8	0.002	an (1 ⁶⁴) - 40 GeV	305941.0	537.3	305304.5	0.002
wi 0 > 50 GeV	24603.7	72.2	24541.6	0.000	m(J) > 50 GeV	24370.6	71.0	24299.6	0.003	Plohad, Plohad				
D2Ext lat 2/v	11460.4	43.5	11415.9	0.004	D2FatJ#t3Var	19443.0	59.1	18389.9	0.003	$\rho_T(J_{ublead}) > 20 \text{ GeV}$	305941.8	\$27.3	305304.5	0.002
NotMassFatJet2Var	6324.8	17.7	6307.1	0.003	NotMassFatJet3Var	7817.8	19.3	7798.5	0.002	NatMVHadRee	139116.1	199.1	138918-1	0.000
$N(c^{2}) = 0$	1650.6	2.5	1656.1	0.002	$N(j^{D}) = 0$	2907.9	2.0	2905.9	0.000	$N(j^{D}) = 0$	93122.3	69.3	93053.0	0.000
$m(j)^{EM} > 400 \text{ GeV}$	543.1	1.2	541.9	0.002	$m(\bar{y})^{\text{Log}} > 400 \text{ GeV}$	642.4	0.7	441.7	0.002	$m(j)^{CM} > 400 \text{ GeV}$	24977.0	27.0	24950.0	0.005

Table: Sequential event yields scaled to a luminosity of 139 fb⁻¹ in all signal (SR) and control (CR) regions after each consecutive cut.

Olep Cut Flow Raw

	n	nerged	HP SR		\rightarrow	merged	LP SR		-	→ reso	lved SR			
cut	all MC	signal	background	s/b	05	-1 MC	lineal.	backersund	1.15	cut	all MC	signal	background	1 s/b
Al	130068341.0	1614919.0	128453422.0	0.013	A	130021524.0	1600328.0	129421196.0	0.012	All	129925818.0	1591473.0	128334345.0	0.012
ET Trigger	130058341.0	1614919.0	128453422.0	0.013	e ^{miss} Trisser	110021524.0	1600328-0	120421196.0	0.012	E mins Trigger	129925818.0	1591473.0	128334345.0	0.012
$N(j^{tag}) \ge 2$	80276923.0	1206109.0	78990734.0	0.016	N(Jag) > 2	00000000000	1371808.0	700404.000.0	0.014	$N(I^{Log}) \ge 2$	80134400.0	1262743.0	78871657.0	0.016
$\rho_T(J_{had}^{Lag}) > 30 \text{ GeV}$	79845180.0	1284639.0	78560541.0	0.016	$\rho_{T}(i^{tag}) > 30 \text{ GeV}$	79798363.0	1270048.0	78528315.0	0.016	$P_T(f_{hard}^{Lag}) > 30 \text{ GeV}$	79702657.0	1261193.0	78441454.0	0.016
$\rho_T(j_{sublead}^{tag}) > 30 \text{ GeV}$	60927735.0	1162385.0	59765351.0	0.019	$p_{\tau}(i^{tag}) > 30 \text{ GeV}$	60580919.0	1147794.0	59733125.0	0.019	$P_T(f_{red}^{Lag}) > 30 \text{ GeV}$	60785213.0	1138939.0	59646274.0	0.019
$E_T^{miss} > 200 \text{ GeV}$	28976201.0	615826.0	28360375.0	0.022	Emile > 200 GeV	20929384.0	601235.0	28328149.0	0.021	$E_T^{miss} > 200 \text{ GeV}$	28833678.0	592380.0	28241298.0	0.021
$E_T^{miss,track} > 50 \text{ GeV}$	26535379.0	557148.0	25978231.0	0.021	E ^{miss, track} > 50 GeV	20488562.0	542557.0	25946005.0	0.021	E ^{miss,track} > 50 GeV	25392856.0	533702.0	25859154.0	0.021
$ \Delta \Phi(E_T^{miss}, E_T^{miss,track}) / \pi < \frac{1}{2}$	25111540.0	537173.0	24574357.0	0.022	(Advertise prise,track)) / = < 1	25054723.0	522582.0	34547141.0	0.021	$ \Delta \Phi(E_{miss}^{miss}, E_{m}^{miss, track}) /\pi < \frac{1}{4}$	24969017.0	513727.0	24455290.0	0.021
$\min\{ \Delta \Phi(E_T^{miss}, j_i^{mallR}) \}_i / \pi < \frac{1}{6}$	14498184.0	347047.0	14151137.0	0.025	min/ (A@(#miss_smallR))) / (# < 1	14451367.0	332456.0	14110911.0	0.024	$\min\{ \Delta \Phi(E_{\pi}^{miss}, j_{i}^{malR}) \}_{i}/\pi < \frac{1}{2}$	14355661.0	323501.0	14032060.0	0.023
$N(J) \ge 1$	2098048.0	69004.0	2029044.0	0.034	N(0 > 1	2051231.0	54413.0	1995518.0	0.027	$ \Delta \phi(e^{miss}, \phi) /\pi < 1$	11545943.0	112941.0	13234002.0	0.024
$ \Delta \Phi(E_T^{max}, J) /\pi < \frac{1}{2}$	2020023.0	68251.0	1951772.0	0.035	$ \Delta \Phi(E_{mins}, J) /\pi < 1$	1973206.0	53560.0	1919545.0	0.028	N(PE) > 2	B472981.0	261205.0	8216773.0	0.032
$\rho_T(J) > 200 \text{ GeV}$	2020023.0	68251.0	1951772.0	0.035	$p_{\pm}(J) > 200 \text{ GeV}$	1973205.0	53560.0	1919545.0	0.028	- (5) - 0004	414 3300 0	242436.0	4404544.0	0.076
$ \eta(J) > 2.0$	2020023.0	68251.0	1951772.0	0.035	m(J) > 50 GeV	856352.0	34016.0	822336.0	0.041	$P_T(l_{lead}) > 40 \text{ GeV}$	6647000.0	240436.0	0000004.0	0.036
m(J) > 50 GeV	903169.0	48607.0	854562.0	0.057	D2FatJetTVar	622245.0	25858.0	595387.0	0.045	$\rho_T(l_{modeland}^{Eig}) > 20 \text{ GeV}$	6847000.0	240436.0	6606564.0	0.036
D2F9EAR2V9F	413011.0	31141.0	381870.0	0.082	TaggerFatJet3Var	189623.0	17566.0	171057.0	0.103	$m(\beta)^{6g} > 50 \text{ GeV}$	6344314.0	229704.0	6114610.0	0.035
N(A) - 0	57350.0	15310.0	38131.0	0.311	$N(j^{b}) = 0$	115457.0	9935.0	105521.0	0.094	$N(i^b) = 0$	4727812.0	100336.0	4567476.0	0.035
$m(\hat{y})^{tag} > 400 \text{ GeV}$	46817.0	14591.0	32226.0	0.453	$m(jj)^{tag} > 400 \text{ GeV}$	95705.0	8855.0	86851.0	0.102	$m(j)^{\text{tag}} > 400 \text{ GeV}$	3724357.0	136798.0	3587559.0	0.038

		\rightarrow	merg	ed HP	CR	\rightarrow	m	erged I	_P CR			\rightarrow	resolv	ed CR			
out	data -	all MC	égial	background	4/6	cut	444	al MC	signal	l lackground	1.6%	be.	40	al MC	signal .	background	1.45
Al	39172871.0	126205461.0	1454575.0	124746796.0	0.052		39972423.0	126183482.0	1454388.0	124729104.0	0.012	AI	39172033.0	126173299.0	1454221.0	124719079.0	0.002
Trigger	39172871.0	126205461.0	1454575.0	124746796.0	0.012	Emiss Trigger	39172423.0	126183492.0	1454388.0	124729104.0	0.012	Errich Trigger	39172033.0	126173299.0	1454221.0	124719078-0	0.012
$N(j^{Lag}) \ge 2$	22186529.0	76400043.0	1125945.0	75294098.0	0.015	$N(2^{24}) \ge 2$	22186081.0	76392074.0	1125658.0	75256416.0	0.015	$N(j^{Lag}) \ge 2$	22185691.0	76381981.0	1125491.0	75256390.0	0.005
$P_T(i_{inal}^{LM_K}) > 30 \text{ GeV}$	22090335.0	75978300.0	1124395.0	74953905.0	0.015	8+(1 ⁵⁴⁶ .) > 30 GeV	22089887.0	75960221.0	1124108.0	74836223.0	0.015	$eT(L^{DA}) > 30 \text{ GeV}$	22089497.0	75950138.0	1122941.0	74826197.0	0.005
$\rho_T(I_{noblend}^{Log}) > 30 \text{ GeV}$	16081162.0	\$7060856.0	1002141.0	\$6058715.0	0.019	$m(\frac{1}{2}) \sim 10 \text{ GeV}$	16090714-0	53141997.0	1001954-0	565411222.0	0.018	$\mu_{T}(f^{2}K_{-}) > 30 GW$	16090324.0	\$7032694.0	1000567.0	56030007.0	0.008
$E_{\nu}^{max} > 200 \text{ GeV}$	3481122.0	25109321.0	455582.0	24553739.0	830.0	CENTRA - COLORA	3400474-0	00000000000	4772007-0	046068673.0	0.010	(1955 - 200 C 4)	2420224 0	MORNING &	4771330.0	04/26/2014 A	0.000
E ^{mint, back} > 50 GeV	2713454.0	22669499.0	395904.0	22271595.0	0.019	CT100,1000 - 10,000	2212005.0	20091302-0	200513.0	200520423.0	0.018	press back - so car	2712636.0	23641139.0	285450.0	22343007.0	0.009
$ \Delta \Phi(E_T^{miss}, E_T^{miss, track}) / \pi < \frac{1}{2}$	2509233.0	21244660.0	276929.0	20967731.0	0.019	LAACCENES CENESTRANCE - 1	2112000-0	22000000.0	390617-0	200500.00	0.018	La print and states and a	actional of	34394 4999 .0	100000	20242022	0.000
min (A P (E ^{mins} , Small R)) / n < 1	1043187.0	10631304.0	186903.0	10444501.0	0.019	meter min male	2004789.0	21220041.0	110042.0	20000049.0	0.018	Transformed Small Strate 1	1043349.0	10003143.0	100103.0	1000000000	0.000
$ \Delta \Phi(E_{m}^{mint}, \beta) /\pi < 1$	931893.0	9514583.0	168598.0	9345985.0	0.019	$\max\{ \Delta \Phi[k_T^{-}, j_1^{-}, j_1^{-}]\} \} / w < \frac{1}{2}$	1042729-0	10613125.0	186516.0	10626819.0	0.01E	instanter	042349.0	00000000.0	13/3/14.0	0000000.0	0.000
N(J) > 1	\$9057.0	953164.0	25022.0	929142.0	0.027	(A0(b)	WI1435-0	9696614.0	D58311.0	W228033.0	0.018	(matel. (2)) / a < 8	404244.0	4/4/400.0	178781-0	9002179.0	0.048
$P_T(J) > 200 \text{ GeV}$	\$9057.0	953164.0	25022.0	929142.0	0.027	N(J) 2 1	54509.0	935195.0	24735.0	000460.0	0.027	$N(j^{log}K) \ge 2$	424495.0	4734125.0	124230.0	4609995.0	0.027
$ \eta(J) > 2.0$	\$9057.0	953164.0	25022.0	929142.0	0.027	w(0 ~ 50 GeV	20922.0	169514.0	15718.0	147795.0	0.045	$P_T(I_{invel}^{NK}) > 40 GeV$	289998.0	3119068-0	100584.0	3005484.0	0.034
n(J) > 50 GeV	21271.0	376483.0	16006.0	360477.0	0.064	D2FatJetIVa	15737.0	257907.0	12963.0	245044.0	0.052	$sT(I^{6g},) > 20 GW$	200009.0	3119068.0	103584.0	2015484.0	0.034
LU2-SUMENSA North Control (State	9/62.0	1/0181.0	94/9.0	550/02.0	0.059	NotMassFatJet3Var	6697.0	122487.0	3283.0	119294.0	0.027	NutMyHadRes	138575.0	1451956.0	29424.0	1412422.0	0.027
nacional de la construction de l	9448.0	100933.0	2001.0	002801.0	0.000	$N(r^{2}) = 0$	1632.0	31021.0	458.0	30563.0	0.015	$N(\delta) = 0$	92943.0	922297.0	16094.0	806203.0	0.020
$m(j)^{LM} > 400 \text{ GeV}$	448.0	17969.0	287.0	17682.0	0.017	$m(\vec{\mu})^{EM} > 400 \text{ GeV}$	390.0	10093.0	167.0	10026.0	0.017	$m(j)^{Lig} > 400 \text{ GeV}$	24728.0	290406.0	6676.0	283730.0	0.024

Table: Non-scaled sequential event yields in all signal (SR) and control (CR) regions after each consecutive cut.

Analysis regions:

Reg	ions	Discriminants									
Reg	ions	Merged high-purity	Merged low-purity	Resolved							
0.1	SR	BDT	BDT	BDT							
0-lepton	VjjCR	m_{jj}^{tag}	m_{jj}^{tag}	m_{jj}^{tag}							
	SR	BDT	BDT	BDT							
1-lepton	WCR	m_{ii}^{tag}	m_{ii}^{tag}	m_{ii}^{tag}							
	TopCR	One bin	One bin	One bin							
2.1	SR	BDT	BDT	BDT							
2-lepton	ZCR	m_{jj}^{tag}	m_{jj}^{tag}	m_{jj}^{tag}							

Baseline MVA inputs: merged:

Variable	0-lepton	1-lepton	2-lepton
m_{jj}^{tag}	 ✓ 	-	√
$\Delta \eta_{ii}^{\text{tag}}$	-	-	✓
p_{T}^{tag, j_2}	~	~	✓
m_J	~	-	-
$D_2^{(\beta=1)}$	~	-	1
$E_{\rm T}^{\rm miss}$	~	-	-
$\Delta \phi(\vec{E}_{T}^{miss}, J)$	~	-	-
η_{ℓ}	-	\checkmark	-
n _{j,track}	~	-	-
ζ_V	-	\checkmark	✓
m_{VV}	-	-	√
p_T^{VV}	-	-	~
m_{VVjj}	-	\checkmark	-
p_T^{VVjj}	-	-	√
w^{tag, j_1}	~	-	-
w^{tag, j_2}	~	-	-

Variable	0-lepton	1-lepton	2-lepton
m_{ii}^{tag}	~	-	~
$\Delta \eta_{ii}^{\text{tag}}$	-	-	\checkmark
p_{T}^{tag, j_1}	~	~	_
p_{T}^{tag,j_2}	~	~	\checkmark
$\Delta \eta_{jj}$	~	\checkmark	~
$p_{T}^{j_{1}}$	~	-	-
$p_{T}^{j_{2}}$	~	~	~
w^{j_1}	~	\checkmark	\checkmark
w^{j_2}	~	\checkmark	\checkmark
n ^{j1} tracks	-	\checkmark	\checkmark
n ^{j2} tracks	-	\checkmark	~
w^{tag, j_1}	~	\checkmark	~
w^{tag, j_2}	~	\checkmark	~
$n_{\text{tracks}}^{\text{tag}, j_1}$	-	\checkmark	\checkmark
$n_{\text{tracks}}^{\text{tag}, j_2}$	-	\checkmark	\checkmark
n _{j,track}	✓	-	\checkmark
n _{j,extr}	√	-	-
$E_{\mathrm{T}}^{\mathrm{miss}}$	~	-	-
η_{ℓ}	-	\checkmark	-
$\Delta R(\ell, \nu)$	-	~	-
ζv	-	~	√
m_{VV}	-	-	~
m_{VVjj}		~	-

Object Definition: Jets

Small-R-jets j:

- EMPFlow
- AntiKt with R = 0.4
- *p*_T(*j*) > 20 GeV

Large-R-jets J:

- LCTopo
- AntiKt with R = 1.0
- *p*_T(*J*) > 200 GeV
- Trimmed with $f_{cut} = 5.0$, $R_{sub} = 0.2$ (Kt-reclustering)

Track-jets j^{track}:

- From PV0-Tracks
- AntiKt with R = 0.2

Tagging Jets $(jj)^{tag}$:

- dijet small-R-jet system *jj* with:
- Δη(jj) < 0
- max(*m_{jj}*)
- Signal jets $(jj)^{sig}$:
 - dijet small-R-jet system *jj* with:
 - $\min(|m_{W/Z} m_{jj}|)$
 - selected after tagging jets
- Signal fat jet J^{sig} :
 - leading p_{T} large-R-jet J
 - with $\Delta R(J, j^{ t tag}) > 1.4$

B-tagging:

- MV2c10 algorithm
- $\epsilon = 70\%$ working point (in $t\overline{t}$)

Object Reconstruction:

- e: isolated clusters in EMcal matched to ID tracks
 - $E_{\rm T} > 7~{\rm GeV}$
 - $|\eta| < 2.47$
 - {loose,medium,tight} id to separate from hadrons
- μ : combined fit from MS and ID
 - *p*_T > 7 GeV
 - $|\eta| < 2.5$
 - {loose, medium, tight} id from #hits in ID and $\left|\frac{q}{p_{MS}} \frac{q}{p_{ID}}\right|$
- *l*(e, *µ*) isolation:
 - from $\sum p_{T}$ of tracks in p_{T} -dep. cone around I
- jets: EMPFlow(R=0.4)+LCTopo(R=1.0)
- b-tagging for j at 70% (in $t\bar{t}$), rejection factor: 380(L), 12(C)
- j(R=0.4):
 - $p_{
 m T}$ > 20 GeV at $|\eta|$ < 2.5, $p_{
 m T}$ > 30 GeV at 2.5 < $|\eta|$ < 4.5
 - vertex tagger PU supr. for j with $p_{
 m T} <$ 60 GeV and $|\eta| <$ 2.5
- J(R=1.0):
 - $p_{
 m T}>$ 200 GeV, $|\eta|<$ 2.0
- *j*^{track}(R=0.2) (#*j*^{track} used as BDT input):
 - $p_{
 m T}>$ 20 GeV, $|\eta|<$ 2.5
- $E_{\mathsf{T}}^{\mathsf{miss}}$: neg. vectorial sum of $p_{\mathsf{T}}(e,\mu,j)$
- $p_{\rm T}^{\rm miss}$: neg. vectorial sum of all good ID tracks assoc. to PV

Overlap Removal:

- j removed if ΔR(j, e) < 0.2
- e removed if $0.2 < \Delta R(j, e) < 0.4$
- j removed if $\Delta R(j,\mu) < 0.2$ and (j has < 3 tracks or small $\Delta E, p(j,\mu)$)
- μ removed if 0.2 < $\Delta R(j, \mu)$ < 0.4
- J removed if ΔR(J, e) < 1.0
- no overlap removal between $J, j, and j^{track}$

W/Z tagging (in J):

- $p_{\rm T}$ dependent requirement on $D_2^{(\beta=1)}$
- must be in $p_{\rm T}$ dependent window around $m_{\rm boson}$
- working points of 50% and 80%

2019-08-22: Previous Analysis with 35.5 fb⁻¹: Phys. Rev. D 100, 032007

Sa	Sample		Merged HP	Merged LP
	W + jets	9200 ± 1300	259 ± 27	582 ± 56
	Z + jets	19000 ± 1400	383 ± 29	955 ± 69
Background	Top quarks	3280 ± 480	277 ± 28	276 ± 32
	Diboson	720 ± 120	69 ± 12	68 ± 14
	Total	32100 ± 2000	988 ± 50	1881 ± 96
	$W(\ell v)W(qq')$	56 ± 22	8.0 ± 3.2	5.4 ± 2.2
	$W(\ell v)Z(qq)$	12.0 ± 4.7	2.1 ± 0.8	1.6 ± 0.6
Signal	$Z(\nu\nu)W(qq')$	66 ± 25	9.0 ± 3.5	7.4 ± 2.9
	$Z(\nu\nu)Z(qq)$	27 ± 10	5.1 ± 2.0	3.1 ± 1.2
	Total		24.3 ± 5.2	17.5 ± 3.9
SM		32300 ± 2000	1012 ± 50	1898 ± 96
Data		32 299	1002	1935

Prev. Analyis: 0Lep Event yields:

Prev. Analysis: Uncertainties:

Uncertainty source	σ_{μ}
Total uncertainty	0.41
Statistical	0.20
Systematic	0.35

Theoretical and modeling uncertainties

Floating normalizations	0.09
Z + jets	0.13
W+ jets	0.09
tī	0.06
Diboson	0.09
Multijet	0.04
Signal	0.07
MC statistics	0.17

Experimental uncertainties

Large-R jets	0.08
Small- <i>R</i> jets	0.06
Leptons	0.02
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.04
<i>b</i> -tagging	0.07
Pileup	0.04
Luminosity	0.03

Electroweak Zjj (VBS):

- Leptonic decay: $\rightarrow \ell^+ \ell^- j j$ $(\ell = e, \mu)$
- 8 TeV <u>paper</u> (20.3 fb⁻¹):
 5 σ observation
- First 13 TeV paper (3 fb⁻¹): Fiducial cross-section
- Current 13 TeV paper (139 fb^{-1}):

Differential x-sec measurement:

- With respect to 4 observables: $m(jj), |\Delta y(jj)|, \Delta \Phi(jj), p_T(\ell \ell)$
- Short term goal: Gives handle on which MC Generator models VBS/VBF most reliably
- Long term goal: Provides input for MC generator improvement

Search for anomalous weak-boson self-interactions:

- EFT approach
- Limits on 4 dim. 6 operators producing anomalous WWZ interactions

Electroweak ZZjj (VBS):

• 13 TeV paper (139 fb⁻¹):

Final states: $\rightarrow \ell \ell \ell \ell j j$ and $\ell \ell \nu \nu j j$

Combined: 5.5 σ

One of the smallest cross-sections measured in ATLAS!

significance of EW Zjj:

	Significance Obs. (Exp.)
llljj	5.5 (3.9) <i>o</i>
llvvjj	1.2 (1.8) σ
Combined	5.5 (4.3) σ

measured cross-section:

 $\sigma_{\mathrm{EW}}^{\mathrm{ZZjj}} = 0.82 \pm 0.21 \; \mathrm{fb}$

strong production:

EW WWjj same sign (VBS):

- $W^{\pm}W^{\pm}jj$ has largest ratio of EW/QCD cross-section among VBS diboson
- Strong production not the dominant background
- 8 TeV paper (20.3 fb⁻¹): Evidence: 4.5 σ
- 13 TeV paper (36.1 fb⁻¹): observation: 6.5 σ fid. cross-section: $\sigma_{\text{EW}}^{W^{\pm}W^{\pm}jj} = 2.89$ fb

• 6 channels:
$$e^{\pm}e^{\pm}$$
, $\mu^{\pm}\mu^{\pm}$, $e^{\pm}\mu^{\pm}$

 \Rightarrow 6 SRs (×4 bins) + 6 m_{jj} CRs + WZ CR

weak production: strong production:

Non-prompt leptons bkg:

- *l* from heavy-flavour hadrons
- Jets misidentified as e

ITk Requirements

Necessary properties:

- Radiation hardness
 - Up to $\approx 2\times 10^{16}~\frac{neq}{cm^2}$ (3D at L0)
 - Up to order of 10⁷ Gy total ionizing doze (TID)
- Increased pileup
 - Up to 10 times more track density
 - Higher granularity
 - Higher burden on readout

Desired for physics:

- High spacial resolution
- High single-pixel hit efficiency

Simulation Internal

requirements:

[cm]

Layer	max. fluence n _{eq} /cm² (SF=1.5)	max. TID in MGy (SF=1.5)
L1 (@2000fb ⁻¹)	4.1e15	3,4
L2	4.7e15	5,2
L3	3.2e15	2,5
L4	2.4e15	1,4

Si 1 MeV neutron equiv. fluence [cm⁻²]

Support

Front End Chip

RD53A prototype:

- Common R&D by ATLAS & CMS
- 50 \times 50 μ m grid
- Three analog FE

ITkPixV1/2 full size chip:

- Based on differential FE
- 1 MHz trigger rate
- Radiation hard up to >5 MGy $(10^{16}~\frac{neq}{cm^2})$
- 65 nm technology
- First wafers of V1.1 available
- Final submission of V2 forseen before end of 2021

382 pixels/20.7 mm

3D Sensors

Innermost layer L0 equipped with 3D sensors:

- Final design review (FDR) held 26 Nov 2019
- Proximity to beam requires superior radiation hardnes $(10^{16} \frac{\text{neq}}{\text{cm}^2})$
- L0 replaceable after high irradiation damage
- Triplet module geometry
- Single-side technology (n&p electrodes etched from same side)
- 50 \times 50 (rings) and 25x100 μ m² (barrel) pixel size
- > 97% hit efficiency at 14° incl. (> 96% perpendicular)

3D Sensors

- Low 80 140 V bias voltage
- Low power dissipation < 10 $\frac{\text{mW}}{\text{cm}^2}$ (@ 25 °C, 10¹⁶ $\frac{\text{neq}}{\text{cm}^2}$)
- More results for 3D sensors in 3D session on Thursday:
 - By Alessandro Lapertosa on FBK sensors
 - By Stefano Terzo on CNM sensors

Results for CNM sensors on RD53A:

(Nuclear Instruments and Methods in Physics Research Section A, Vol 982)

250

Bias Structure

Bias structure allows check of leakage current before flip-chip:

- Several options from different vendors:
 - Poly-silicon bias resistor
 - Higher noise
 - Bias rail with punch-through (PT)
 - Reduced hit efficiency around PT dots
 - No bias structure
 - Needs temporary metal layer until wafer dicing
 - Uniform efficiency
 - No uniform ground in case of disconnected pixel

Thickness and Planarity

Some institutes have dedicated setup to perform laser scan

Other institutes: Microscope-focus method:

- Focus on several points on sensor and chuck by adjusting microscope height with fixed focal length
- Local thickness approximated as difference of height *h* between point on chuck and sensor

$$\underset{i}{\overset{*}{_{2}}}^{\bullet,i} \underset{i}{\overset{*}{_{3}}}^{\bullet,i} \underset{i}{\overset{*}{_{6}}}^{\bullet,i} \underset{i}{\overset{*}{_{3}}}^{\bullet,i} \underset{i}{\overset{*}{_{6}}}^{\bullet,i} \underset{i}{\overset{*}{_{3}}}^{\bullet,i} \underset{i}{\overset{*}{_{6}}}^{\bullet,i} \underset{i}{\overset{*}{_{3}}}^{\bullet,i} \underset{i}{\overset{*}{_{6}}}^{\bullet,i} \underset{i}{\overset{*}{_{6}}}\overset{i}{\overset{*}{_{6}}}^{\bullet,i} \underset{i}$$

CV and IV

CV measurements:

- Plot $1/C^2$ vs V to calculate V_{dep}
- Perform 2 fits:
 - Constant in fully depleted region
 - Linear rise before
- V_{dep} given by the position of the intersection
- Requirement: $V_{dep} < 100 V$ (for 150 μ m)

IV measurements:

- Plot I vs V
- Increase by $\Delta l > 20\%$ over $\Delta V = 5V$ step defined as breakdown
- Requirement: $V_{\text{break}} > V_{\text{dep}} + 70 \text{ V}$
- Requirement: $\mathit{I}_{\rm leak}/{\rm area} < 0.75~\mu A/{\rm cm}^2$ at $V_{\rm dep} + 50~{\rm V}$

CV and IV

CV measurements:

- Plot $1/C^2$ vs V to calculate V_{dep}
- Perform 2 fits:
 - Constant in fully depleted region
 - Linear rise before
- V_{dep} given by the position of the intersection
- Requirement: $V_{dep} < 100 V$ (for 150 μ m)

IV measurements:

- Plot I vs V
- Increase by $\Delta l > 20\%$ over $\Delta V = 5V$ step defined as breakdown
- Requirement: $V_{\text{break}} > V_{\text{dep}} + 70 \text{ V}$
- Requirement: $\mathit{I}_{\rm leak}/{\rm area} < 0.75~\mu A/{\rm cm}^2$ at $V_{\rm dep} + 50~{\rm V}$

It measurements:

- Plot I at $V = V_{dep} + 50 \text{ V}$
- Measure for 48 h
- Ensure stable humidity, temperature, and darkness
- Requirement: Variation $\Delta I_{\text{leak}} < 25\%$

ITk QA/QC

Quality Control (QC):

Quality Assurance (QA):

• Identify defects in finished sensors

• Prevent defects in production

	Production stage	Associated QA/QC
Pre-production	Sensor wafer production (sensor vendor)	- IV/CV - Visual inspection - Metrology
	After UBM - Thinning - Backside metallisation and dicing (Hybridisation vendor)	- IV - Metrology - Visual inspection
	On test structures and bare sensors at ITk institutes	- IV/CV/IT - Inter pixel R/C - Irradiations - CCE
	On flip-chipped modules at ITk institutes	- IV/IT - Irradiations - Test-beams
Production	Sensor wafer production (sensor vendor)	- IV/CV - Visual inspection - Metrology
	After UBM, Thinning, Backside metallisation and dicing (Hybridisation vendor)	- IV (?) - Metrology - Visual inspection
	On test structures at ITk institutes	- IV/CV/IT - Inter pixel R/C

ITk Schedule

Planar sensors:

- Pre-prod.: Mar Sep 2021
- Production: mid 2022 mid 2024

3D sensors:

- Pre-prod.: Aug 2020 Apr 2021
- Production: mid 2022 mid 2024