

New approaches for missing energy modes

Search for LFV $B \rightarrow KT\ell$

G. de Marino, K. Trabelsi

2021.05.17 - SÉMINAIRES DOCTORANTS

FLAVOR PHYSICS AND EW PENGUINS

Goa	ls of flavor physics :		
•	Precisely measure parameters of the standard model (e.g. CKM quark mixing mat	rix) t	ree
•	Search for the effects of physics beyond the standard model in precision	lo	юр
	measurements		
•	Discover processes that are forbidden (or highly suppressed) by SM	forbidd	len

Since **new-physics** particles may enter the loop diagrams or even mediate FCNCs at tree level, the b → s(d) are sensitive to physics beyond the SM. Moreover, final states involving lepton pairs are theoretically and experimentally clean.

Electro-weak penguins

۶,ζ٥

W

STATUS OF R_K AND PROSPECTS

PHYSICS IMPLICATIONS

5.

- 1. Lepton-flavor violating (LFV) decays are strongly suppressed in SM. However, their rates could be enhanced if LFU is violated
- 2. Many NP scenarios can explain the $b \rightarrow s$ anomalies
 - If we restrict the attention to tree-level mediators: W', Z', Leptoquarks (LQ)
 - LQ -both scalar and vectors- are usually preferred over other mediators
- 3. LQ models predict sizeable LFV rates for leptonic and semileptonic B-decays [Hiller et al., 1609.08895]

$$\mathcal{B}(B \to K(e^{\pm}, \mu^{\pm})\tau^{\mp}) \sim 2 \cdot 10^{-8} \left(\frac{1 - R_K}{0.23}\right)^2$$

4. The $U_1 \sim (\mathbf{3}, \mathbf{1})_{2/3}$ vector leptoquark is an excellent mediator to explain charged and neutral anomalies at same time [Angelescu et al., 1808.08179]

Observation of a charged LFV decay would be a striking sign of new physics!

SEARCH FOR THE DECAY $B^+ \rightarrow K^+ \tau l$ At B-factories

e^+e^- **PRODUCTS** at $\sqrt{s} = 10.58$ GeV

6

(SUPER)KEKB ACCELERATOR

BELLE II EXPERIMENT

Goal: $\mathscr{L}_{int} = 50 \text{ ab}^{-1}$ (2019 - 2031) (Belle @ KEKB: $\mathscr{L}_{int} = 1.05 \text{ ab}^{-1}$ [1999-2010])

The upgrade KEKB--->SuperKEKB has required a substantial redesign of Belle II detector, whose performance are challenged by radiation damage and higher background (design luminosity is x40 higher). The aim is to guarantee in the new environment equal or better performance than Belle with KEKB.

STRATEGY FOR $B^+ \to K^+ \tau l$

Processes involving τ's are experimentally challenging because of missing energy

- Once the B_{tag} is fully reconstructed, the only source of missing energy is the the *τ* itself:
 - The recoil mass
 - $\mathbf{m}_{\tau} = [\mathbf{m}_{B}^{2} + \mathbf{m}_{Kl}^{2} 2(\mathbf{E}_{B}^{*}\mathbf{E}_{Kl}^{*} + |\overrightarrow{\mathbf{p}}_{B}^{*}||\overrightarrow{\mathbf{p}}_{Kl}^{*}|\cos\theta)]^{\frac{1}{2}}$ can be used to extract the signal from the background

- BB events must be *tagged* to distinguish them from other qq processes
- The B *tag* candidate is reconstructed by choosing a tagging algorithm
- The remaining reconstructed particles in the event make up the target (*signal*) B

- $B\overline{B}$ events must be *tagged* to distinguish them from other $q\overline{q}$ processes
- The B *tag* candidate is reconstructed by choosing a tagging algorithm
- The remaining reconstructed particles in the event make up the target (*signal*) B

- $B\overline{B}$ events must be *tagged* to distinguish them from other $q\overline{q}$ processes
- The B *tag* candidate is reconstructed by choosing a tagging algorithm
- The remaining reconstructed particles in the event make up the target (*signal*) B

$$\varepsilon_{tag} = \sum_{i} \varepsilon_{i} \mathscr{B}_{i}$$

- $B\overline{B}$ events must be *tagged* to distinguish them from other $q\overline{q}$ processes
- The B *tag* candidate is reconstructed by choosing a tagging algorithm
- The remaining reconstructed particles in the event make up the target (*signal*) B

$$\varepsilon_{tag} = \sum_{i} \varepsilon_{i} \mathscr{B}_{i}$$

<u>Reconstruction efficiency</u> depends on:

- Acceptance
- Tracking eff.
- Particle identification

- BB events must be *tagged* to distinguish them from other $q\bar{q}$ processes
- The B tag candidate is reconstructed by choosing a tagging algorithm
- The remaining reconstructed particles in the event make up the target (signal) B

each

Reconstruction efficiency depends on:

- Acceptance
- Tracking eff.
- Particle identification

Branching ratio

- $B^- \rightarrow X_c l^- \nu$: 22% (Semileptonic B decays)
- Hadronic decays

FEI algorithm

FEI : arXiv:1807.086880v4 [hep-ex]

BABAR MEASUREMENT with hadronic tagging

Exp.

CLEO

BaBar

Belle

Scans

Off-res.

 fb^{-1}

17.1

54

100

 $\Upsilon(4S)$

10580 MeV

 10^{6}

17.1

471

772

 fb^{-1}

16

433

711

- The Btag is fully reconstructed in one of many final states of the form $B^- \rightarrow D^{(*)0}X^-$ (hadronic B decays - <u>Semi-Exclusive Reconstruction</u>) $\epsilon_{SER} \sim 0.4\%$
- One-prong τ decays are selected $\mathscr{B}(\tau \rightarrow 1 \text{ prong}) \simeq 81 \%$
- τ candidate mass is the main discriminant against background
- After the $m(K\pi) > 1.95 \text{ GeV}/c^2$ requirement, the BB background is highly suppressed. The remaining background is dominated by continuum quark-pair production ($e^+e^- \rightarrow q\overline{q}$; $q = \{u, d, s, c\}$), which is suppressed by a likelihood ratio.

A search for the decay modes $B^{\pm} \rightarrow h^{\pm}\tau I$: arXiv:1204.2852v2 [hep-ex]

Analysis with hadronic FEI and Belle dataset is ongoing

Millions of BB pairs

Mode

 $B^+ \rightarrow K^+ \tau \mu$

 $B^+ \rightarrow K^+ \tau e$

 $B^+ \xrightarrow{h} K^+ \tau^+ \mu^-$

11

TAGGING METHOD AND RECOIL MASS

Which method to choose

12

- $\overrightarrow{p}_{B_{tag}}$ is unknown due to **neutrino** \rightarrow worse resolution on m_{τ} but still usable as long as signal side is well reconstructed
- Higher tagging efficiency ($\varepsilon_{\tt sl}^{\tt FEI}\sim\!\!2\,\%$)

$B^+ \rightarrow K^+ \tau l: AN 'INCLUSIVE' TAGGING APPROACH$

Develop a new algorithm using Belle dataset

- Choose leptonic tau decays
 - Only one *track (lower multiplicity)* $\mathscr{B}(\tau^+ \to 1^+ \nu \nu) \simeq 35\%$
 - +1 lepton

The **K213** way...

- Reveals the presence of D⁰
- $c \rightarrow s + W^{*+}$
- $\mathscr{B}(D^0 \to K^-X) \simeq 55\%$

- Choose 'inclusive' SL B tagging
 - High b.r.
 - $b \rightarrow c + W^{*-}$
 - +1 (high momentum) lepton
 - Intermediate D resonances are not reconstructed

CONCLUSION

CONCLUSION

Je.

CONCLUSION

- Validation through MC/Data comparison
 - Jet characterisation through ${
 m B}^+
 ightarrow {
 m J}\psi{
 m K}^+$ method
 - Background check in data
- Study of a specific LQ model
- U.L. extraction (to be compared to the more 'conservative' but never applied yet! - FEI semileptonic)

$50 \text{ ab}^{-1} \text{ by } \sim 2031$

In order to shed further light on the possible origin of the existing flavour anomalies, additional independent measurements are needed!

To do

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
${\rm Br}(B^+ \to K^+ \tau^\pm e^\mp) \cdot 10^{\bar{6}}$	< 10	< 1
${\rm Br}(B^+ \to K^+ \tau^\pm \mu^\mp) \cdot 10^6$	< 10	< 1

Variables related to the B meson direction: the spin-1 Υ (4S) decaying into two spin-0 B mesons results in a sin² Θ_B angular distribution with respect to the beam axis; in contrast for e⁺e⁻ \rightarrow ff events, the spin-1/2 fermions f, and its two resulting jets, are distributed following a 1 + cos² Θ_B distribution. Using the angle Θ_B between the reconstructed momentum of the B candidate (computed in the Υ (4S) reference frame) and the beam axis, the variable **[cos\Theta_B]** allows one to discriminate between signal B decays and the B candidates from continuum background.

The Fox-Wolfram moments: for a collection of N particles with momenta pi, the k-th order Fox-Wolfram moment Hk is defined as

$$H_{k} = \sum_{i,j}^{n} |\overrightarrow{p}_{i}| |\overrightarrow{p}_{j}| P_{k}(\cos \theta_{ij})$$

where θ_{ij} is the angle between p_i and p_j , and P_k is the k-th order Legendre polynomial. Notice that in the limit of vanishing particle masses, $H_0 = 1$; that is why the normalized ratio $R_k = H_k/H_0$ is often used, so that for events with two strongly collimated jets, R_k takes values close to zero (one) for odd (even) values of k. These $R_n = \frac{\pi_n}{H_0}$ sharp signatures provide a convenient discrimination between events with different topologies.

Thrust: for a collection of N momenta p_i (i = 1,...N), the thrust axis T is defined as the unit vector along which their total projection is maximal; the thrust scalar T (or thrust) is a derived quantity defined as

$$T = \frac{\sum_{i=1}^{N} |\vec{T} \cdot \vec{p}_{i}|}{\sum_{i=1}^{N} |\vec{p}_{i}|}$$

For a BB event, both B mesons are produced almost at rest in the $\Upsilon(4S)$ rest frame, so their decay particles are isotropically distributed, their thrust axes are randomly distributed, and thus $|\cos \Theta_T|$ follows a uniform distribution in the range [0,1]. In contrast for $q\bar{q}$ events, the momenta of particles follow the direction of the jets in the event, and as a consequence the thrusts of both the B candidate and the ROE are strongly directional and collimated, yielding a $|\cos \Theta_T|$ distribution strongly peaked at large values.

Cleo Cones: Set of nine variables corresponding to the momentum flow around the thrust axis of the B candidate, binned in nine cones of 10° around the thrust axis as illustrated

9 fb⁻¹ @ 7, 8 and 13 TeV (Run1 & Run2)

LHC*b* **MEASUREMENT**

 $B^+ \rightarrow K^+ \mu^- \tau^+$ (using B_{s2}^{*0})

• Use $B_{s2}^{*0} \rightarrow B^+K^-$ decay: about 1% of B^+ production

- $K^+\mu^-$ pair from secondary vertex plus additional track t⁺
- Expect peak at τ mass also for B not from B_{s2}^{*0} decay, but wider distribution
- $K^+\mu^-\tau^+$ has lower backgrounds than $K^+\mu^+\tau^-$

- Remaining backgrounds produce smooth m²_{miss} distributions
- Search performed in bins of final BDT output with increasing signal sensitivity

Mode	U.L. (90% CL)	Exp.	
$B^+ \rightarrow K^+ \tau \mu$	4.8 x 10 ⁻⁵	BaBar	
B+→K+τe	3.0 x 10 ⁻⁵	BaBar	
$B^+ \rightarrow K^+ \tau^+ \mu^-$	3.9 x 10 ⁻⁵	LHCb	

BACKUP NUMBERS

Th Belle II Physics Book, [arXiv:1808.10567]

Belle II sensitivities	Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
	$R_K \; ([1.0, 6.0] \mathrm{GeV}^2)$	28%	11%	3.6%
	$R_K \ (> 14.4 \mathrm{GeV}^2)$	30%	12%	3.6%
	$R_{K^*}~([1.0, 6.0]{ m GeV^2})$	26%	10%	3.2%
	$R_{K^*} \ (> 14.4 {\rm GeV}^2)$	24%	9.2%	2.8%
	$R_{X_s}~([1.0, 6.0]{ m GeV^2})$	32%	12%	4.0%
	$R_{X_s} \ (> 14.4 {\rm GeV}^2)$	28%	11%	3.4%

2019

Moriond 2021

Exp :	$R_D = 0.340 \pm 0.030$,	$R_{D^*} = 0.295 \pm 0.014$	I
SM:	$R_D^{ m SM} = 0.293 \pm 0.008 ,$	$R_{D^*}^{\rm SM} = 0.257 \pm 0.003$	l

$R_K^{[1.1,6]} = 0.847(42)^{\text{LHCb}}$	vs	$R_K^{[1,6]} = 1.00(1)^{\text{SM}}$
LHCb 2017		
$R_{K^*}^{[1.1,6]} = 0.71(10)^{\text{LHCb}}$	vs	$R_{K^*}^{[1,6]} = 1.00(1)^{\mathbf{SM}}$

LUMINOSITY

LUMINOSITY

PLAN

CURRENT STATUS OF R(D(*))

 $R(D^*)$

0.4

0.35

0.3

0.25

0.2

R(D) and R(D^{*}) exceed the SM predictions given in the last row of the table above, by 1.4σ and 2.5σ respectively. Considering the R(D)-R(D^{*})) correlation of -0.38, the resulting combined χ^2 is 12.33 for 2 degree of freedom, corresponding to a p-value of 2.07 x 10⁻³. The difference with the SM predictions reported above, corresponds to about 3.080 HFLAV

SUPERKEKB ACCELERATOR

BELLE II EXPERIMENT

- Acceptance $\sim 4\pi$ and extended in the FWD region.
- Vertex resolution (<100 μ m), both along the beam direction and in the transverse plane.
- Very high reconstruction efficiencies for charged particles and photons, down to momenta of ~10 MeV/c.
- Very good momentum resolution for a wide range of momenta.
- Precise measurements of γ energy and position, from 20 MeV to 8 GeV in order to reconstruct π^0 mesons.
- Highly efficient particle identification for electrons and muons, as well as a π/K separation over from ~0.6 GeV/c to ~4 GeV/c.

STUDY ON TAG EFFICIENCY

The main differences of this approach with respect to SL FEI are:

- Give up the reconstruction of the intermediate D^{*(*)0} resonances (efficiency)
- Use only the $D^0 \rightarrow K\pi$ mode (purity)

$$\stackrel{\longrightarrow}{\longrightarrow} \frac{\varepsilon_{\mathrm{SL}}}{\varepsilon_{\mathrm{D}^{0}1}} = \frac{\mathscr{B}(\mathrm{B}^{+} \to \overline{\mathrm{D}}^{0}\mathrm{X}1\nu_{1}) \varepsilon_{\mathrm{D}^{0}} \varepsilon_{\mathrm{X}} \varepsilon_{1}}{\mathscr{B}(\mathrm{B}^{+} \to \overline{\mathrm{D}}^{0}\mathrm{X}1\nu_{1}) \varepsilon_{\mathrm{D}^{0}}^{\prime} \varepsilon_{1}} = \frac{\varepsilon_{\mathrm{D}^{0}} \varepsilon_{\mathrm{X}}}{\varepsilon_{\mathrm{D}^{0}}^{\prime}}$$
$$\sim \frac{0.12}{0.03} \times [0.30 + 0.63(0.65 \varepsilon_{\pi^{0}} + 0.35 \varepsilon_{\gamma}) + 0.07 \varepsilon_{\mathrm{t}}^{2}] \sim 2.6$$

$$\frac{\varepsilon_{\rm SL}}{\varepsilon_{\rm K1}} = \frac{\mathscr{B}(\mathsf{B}^+ \to \overline{\mathsf{D}}^0 \mathsf{Xl} \nu_1) \varepsilon_{\mathsf{D}^0} \varepsilon_{\mathsf{X}} \varepsilon_1}{\mathscr{B}(\mathsf{B}^+ \to \overline{\mathsf{D}}^0 \mathsf{Xl} \nu_1) \mathscr{B}(\overline{\mathsf{D}}^0 \to \mathsf{K}^+ \mathsf{X}) \varepsilon_{\mathsf{t}} \varepsilon_1} = \frac{\varepsilon_{\mathsf{D}^0} \varepsilon_{\mathsf{X}}}{\mathscr{B}(\overline{\mathsf{D}}^0 \to \mathsf{K}^+ \mathsf{X}) \varepsilon_{\mathsf{t}}}$$
$$\sim \frac{0.12}{0.4} \times [0.30 + 0.63(0.65 \varepsilon_{\pi^0} + 0.35 \varepsilon_{\gamma}) + 0.07 \varepsilon_{\mathsf{t}}^2] \sim 0.2$$

	Tag	Tag. eff.	Yτ	τ ch. eff.	٤ _{тот}
	HAD fei	HAD fei 0.50% 1-prong		34%	0.08%
	SL fei	1.00%	lept	20%	0.09%
\rightarrow	Dº(Kπ)+I	0.38%	lept	20%	0.03%
	Dº(Kπ)+I	0.38%	1-prong	34%	0.06%
	K+I	5.20%	lept	20%	0.48%
	K+I	5.20%	1-prong	34%	0.83%

$$\varepsilon_{D^{0}} = \sum_{i \in FEI} \varepsilon_{i} \mathscr{B}_{i} \sim 0.12$$
$$\varepsilon_{D^{0}}' = \varepsilon_{K\pi} \mathscr{B}_{K\pi} \sim 0.03$$

Eff. - Assumed (%)
$$\pi^{0}$$
: 40
 γ : 60B.R.'s (%)
 $B^{-} \rightarrow X_{c} | v : 11$
 $B^{-} \rightarrow D^{0} X | v : 10$
 $T \rightarrow 3\pi$: 9
 $\tau \rightarrow 3\pi$: 9
 $\tau \rightarrow 1$: 18
 $T \rightarrow 1$ -pr: 72
 $B^{-} \rightarrow D^{0} X$: 79
 $D^{0} \rightarrow K^{-} X$: 55
 $D^{0} \rightarrow K^{-} \pi^{+}$: 4

THEORY - U_1 **MODEL**

Weak singlet vector LQ that can simultaneously explain R_K and R_D - Absence of the tree level constraint coming from $\mathscr{B}(B \to K^{(*)}\nu\overline{\nu})$. Such NP extension is non-renormalizable at loop level: additional assumptions must be specified (e.g. completions involving Z' and a color-octet of vector bosons).

$$U_1 = (3, 1, 2/3)$$

 $Q = Y + T_3 = 0 + 2/3 = 2/3$

"Simplified models with LQ states seem to be favored. Among them, the U₁ case stands for simplicity & phenomenological success." G. Isidori (FCPC)

$$\mathcal{L} \supset + x_{1\,ij}^{LL} \bar{Q}_L^{i,a} \gamma^{\mu} U_{1,\mu} L_L^{j,a} + x_{1\,ij}^{RR} \bar{d}_R^i \gamma^{\mu} U_{1,\mu} e_R^j + x_{1\,ij}^{\overline{RR}} \bar{u}_R^i \gamma^{\mu} U_{1,\mu} \nu_R^j + \text{h.c.}.$$

'Genuine' LQ: does not possess "diquark" couplings due to the SM quantum number assignment.

x denotes the coupling matrices of scalar (vector) leptoquarks with the quark-lepton pairs **arXiv:1603.04993v3[hep-ph]**

arXiv:2103.12504v1 [hep-ph]

Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$R_{K^{(*)}} \ \& \ R_{D^{(*)}}$
S_3 ($\bar{3}, 3, 1/3$)	✓	×	×
S_1 (3 , 1 , 1/3)	×	\checkmark	×
R_2 (3 , 2 , 7/6)	×	\checkmark	×
U_1 (3 , 1 , 2/3)	\checkmark	✓	 ✓
U_3 (3 , 3 , 2/3)	\checkmark	×	×

TABLE III. Summary of the LQ models which can accommodate $R_{K^{(*)}}$ (first column), $R_{D^{(*)}}$ (second column), and both $R_{K^{(*)}}$ and $R_{D^{(*)}}$ (third column), without being in conflict with existing constraints. See text for details.

THEORY - PREDICTION ON BR

Gray points are excluded by current LHC data (36 fb⁻¹) on $pp \rightarrow II$ ($I = \mu, \tau$). The future LHC sensitivity is depicted by the red points, which were obtained by extrapolating current data to 300 fb⁻¹, as discussed in Sec. 4.2. Blue points are allowed by all constraints, including the extrapolated LHC results to 300 fb⁻¹.

[...] In particular we find the lower bound on the LFV mode B(B \rightarrow Kµ τ) few×10⁻⁷ for any mass of m_{U1} in which Yukawa couplings are kept within the perturbativity limits and in the minimal U1 scenario in which only left-handed couplings are allowed to take values different from zero. The upper bound is superseded by the current experimental bound B(B \rightarrow Kµ τ)^{exp} < 4.8×10⁻⁵, which can be improved both at LHCb and Belle II. Improving that bound by two orders of magnitude can therefore either exclude or, if observed, corroborate the validity of the minimal U1 scenario.

$m(K\pi)$ - COMPARISON WITH BABAR

FEI PERFORMANCE

Tagging efficiency: the fraction of $\Upsilon(4S)$ events which can be tagged) **Tag-side efficiency:** the fraction of $\Upsilon(4S)$ events with a correct tag **Tag-side purity:** the fraction of the tagged $\Upsilon(4S)$ events with a correct tag

	B^{\pm}	B^0
Hadroi	nic	
FEI with FR channels	0.53~%	0.33~%
FEI	0.76~%	0.46~%
FR	0.28~%	0.18~%
SER	0.4~%	0.2~%
Semilept	onic	
FEI	1.80~%	2.04~%
FR	0.31~%	0.34~%
SER	0.3~%	0.6~%

47

arXiv:hep-ex/1807.08680v4

HADRONIC	~10% purity			
	B +	B ⁰		
FEI efficiency (%) Belle II	0.7	0.5		
Full Reconstruction (%) Belle	0.45	0.29		

SEMILEPTONIC	~5% p		
	B +	\mathbf{B}^0	
FEI efficiency (%) Belle II	2.04	1.80	Swapped?
Full Reconstruction (%) Belle	0.34	0.31	

OS MODE - $m(K\pi)$ **AND** ROE

■ 1st cut: 3- σ m(K π) interval → effective on uds and charm background

2nd cut: The ROE, deprived of the 1-prong τ daughter candidate, has mostly zero tracks

RECOIL m_{τ} - **OS AND SS MODE**

Signal b.r. ~2.5x10⁻⁴. Still long way to go!

- Similar level of background for the two tag modes
- B⁺B⁻ main source of background

between $\mu_{\texttt{tag}}$ and $\mu_{\texttt{sig}}$

decays

B⁺

BABAR RESULTS

TABLE IV: Results for the observed sideband events $N_{sb,i}$, signal-to-sideband ratio $R_{b,i}$, expected background events b_i , number of observed events n_i , signal efficiency $\epsilon_{h\tau\ell,i}$ (assuming uniform three-body phase space decays) for each τ channel iand $B \to h\tau\ell$ [9] branching fraction central value and 90% C.L. upper limits (UL). All uncertainties include statistical and systematic sources.

				$\mathcal{B}(B o h au \ell) \; (imes 10^{-5})$				
Mode	τ channel	$N_{sb,i}$	$R_{b,i}$	b_i	n_i	$\epsilon_{h au\ell,i}$	central value	90% C.L. UL
	e	22	0.02 ± 0.01	0.4 ± 0.2	2	$(2.6 \pm 0.2)\%$		
$B^+ \to K^+ \tau^- \mu^+$	μ	4	0.08 ± 0.05	0.3 ± 0.2	0	$(3.2\pm0.4)\%$	$0.8 \ ^{+1.9}_{-1.4}$	< 4.5
	π	39	0.045 ± 0.020	1.8 ± 0.8	1	$(4.1\pm0.4)\%$		
	e	5	0.03 ± 0.01	0.2 ± 0.1	0	$(3.7 \pm 0.3)\%$		
$B^+ \to K^+ \tau^+ \mu^-$	μ	3	0.06 ± 0.03	0.2 ± 0.1	0	$(3.6\pm0.7)\%$	$-0.4 \ ^{+1.4}_{-0.9}$	< 2.8
	π	153	0.045 ± 0.010	6.9 ± 1.5	11	$(9.1\pm0.5)\%$		
	e	6	0.095 ± 0.020	0.6 ± 0.1	2	$(2.2 \pm 0.2)\%$		
$B^+ \to K^+ \tau^- e^+$	μ	4	0.025 ± 0.010	0.1 ± 0.1	0	$(2.7\pm0.6)\%$	$0.2 \ ^{+2.1}_{-1.0}$	< 4.3
	π	33	0.045 ± 0.015	1.5 ± 0.5	1	$(4.8\pm0.6)\%$		
	e	8	0.10 ± 0.06	0.8 ± 0.5	0	$(2.8 \pm 1.1)\%$		
$B^+ \to K^+ \tau^+ e^-$	μ	3	0.045 ± 0.020	0.1 ± 0.1	0	$(3.2 \pm 0.7)\%$	$-1.3 \ ^{+1.5}_{-1.8}$	< 1.5
	π	132	0.035 ± 0.010	4.6 ± 1.3	4	$(8.7\pm1.2)\%$		
	e	55	0.017 ± 0.010	0.9 ± 0.6	0	$(2.3 \pm 0.2)\%$		
$B^+ \to \pi^+ \tau^- \mu^+$	μ	10	0.11 ± 0.04	1.1 ± 0.4	2	$(2.9\pm0.4)\%$	$0.4 \ ^{+3.1}_{-2.2}$	< 6.2
	π	93	0.035 ± 0.010	3.3 ± 0.9	4	$(2.8\pm0.2)\%$		
	e	171	0.012 ± 0.003	2.1 ± 0.5	2	$(3.8\pm0.3)\%$		
$B^+ \to \pi^+ \tau^+ \mu^-$	μ	89	0.04 ± 0.01	3.6 ± 0.9	4	$(4.8 \pm 0.3)\%$	$0.0 \ ^{+2.6}_{-2.0}$	< 4.5
	π	512	0.050 ± 0.005	25 ± 3	23	$(9.1\pm0.6)\%$		
	e	1	0.050 ± 0.025	0.1 ± 0.1	1	$(2.0 \pm 0.8)\%$		
$B^+ \to \pi^+ \tau^- e^+$	μ	16	0.025 ± 0.010	0.4 ± 0.2	1	$(2.8\pm0.3)\%$	$2.8 \ ^{+2.4}_{-1.9}$	< 7.4
	π	172	0.035 ± 0.008	6.0 ± 1.4	7	$(5.8\pm0.3)\%$		
	e	31	0.033 ± 0.013	1.0 ± 0.4	0	$(2.9 \pm 0.3)\%$		
$B^+ \to \pi^+ \tau^+ e^-$	μ	247	0.012 ± 0.005	3.0 ± 1.2	2	$(4.6\pm0.4)\%$	$-3.1 {}^{+2.4}_{-2.1}$	< 2.0
	π	82	0.07 ± 0.03	5.7 ± 2.5	3	$(3.7\pm1.0)\%$		

SEMILEPTONIC B DECAYS

SEMILEPTONIC B DECAYS - Belle 2							SEMILEPTONIC B DECAYS - Belle						
B.R.	Channel	B.R.(CAT)	B.R.(CAT)/TOT	B+> D0 X I v			B.R.	Channel	B.R.(CAT)	B.R.(CAT)/TOT	B+> D0 X I v		
0,05490	anti-D*0 e+ nu_e	0,08528	0,79	0,098	0,31	direct	0,05790	anti-D*0 e+ nu_e	0,08180	0,72	0,100	0,30	direct
0,00050	anti-D*0 pi0 e+ nu_e				0,64	from D*0	0,00030	anti-D*0 pi0 e+ nu_e				0,63	from D*0
0,00113	anti-D*0 pi+ pi- e+ nu_e						0,00000	anti-D*0 pi+ pi- e+ nu_e					
0,00075	anti-D*0 pi0 pi0 e+ nu_e						0,00000	anti-D*0 pi0 pi0 e+ nu_e					
0,00201	anti-D*0 eta e+ nu_e						0,00000	anti-D*0 eta e+ nu_e					
0,00050	anti-D0 pi0 e+ nu_e						0,00050	anti-D0 pi0 e+ nu_e					
0,00023	anti-D0 pi+ pi- e+ nu_e						0,00000	anti-D0 pi+ pi- e+ nu_e					
0,02310	anti-D0 e+ nu_e						0,02310	anti-D0 e+ nu_e					
0,00015	anti-D0 pi0 pi0 e+ nu_e						0,00000	anti-D0 pi0 pi0 e+ nu_e					
0,00201	anti-D0 eta e+ nu_e						0,00000	anti-D0 eta e+ nu_e					
0,00100	D*- pi+ e+ nu_e	0,00215	0,02				0,00070	D*- pi+ e+ nu_e	0,00180	0,02			
0,00100	D- pi+ e+ nu_e						0,00110	D- pi+ e+ nu_e					
0,00015	D-pi+pi0 e+ nu_e						0,00000	D-pi+pi0 e+ nu_e			Of which going	to anti-D0	
0,00030	D_s*- K+ e+ nu_e	0,00060	0,01				0,00020	anti-D(2S)0 e+ nu_e	0,02990	0,26	0,16		
0,00030	D_s- K+ e+ nu_e			Of which going t	to anti-D0		0,00050	anti-D*(2S)0 e+ nu_e					
0,00757	anti-D_10 e+ nu_e	0,01950	0,18	0,11			0,00810	anti-D_10 e+ nu_e					
0,00389	anti-D_0*0 e+ nu_e						0,00910	anti-D_0*0 e+ nu_e					
0,00431	anti-D'_10 e+ nu_e						0,00810	anti-D'_10 e+ nu_e					
0,00373	anti-D_2*0 e+ nu_e						0,00390	anti-D_2*0 e+ nu_e					
		0,10753	1,00						0,11350	1,00			