Single Leptoquark Solutions to the B-physics Anomalies

Florentin Jaffredo

Based on arXiv:2103.12504 In collaboration with A. Angelescu, D. Bečirević , D. Faroughy, O. Sumensari

IJCLab (pôle theorie)

May 17, 2021

Hints of LFUV

Since 2014, Belle, Babar and LHCb - observed deviations from SM in universality ratios:

$$\begin{split} b &\to s\ell\bar{\ell}: \quad R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \to K^{(*)}e^+e^-)} \\ b &\to c\ell\bar{\nu}: \quad R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)}\tau\bar{\nu})}{\mathcal{B}(B \to D^{(*)}\mu\bar{\nu})} \end{split}$$

Theoretically clean observables:

- CKM cancellation,
- Most hadronic uncertainties cancel,
- High sensitivity to NP.

Low energy observables.

・ロト ・日下 ・日下 ・ 日下 ・ うらの

3/16

Semileptonic decays in the Standard Model

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ シ ● の ● 4/16

EFT description

Effective Hamiltonian: CC

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= \frac{4G_F}{\sqrt{2}} V_{cb} \left[(1 + g_{V_L}) (\bar{c}_L \gamma_\mu b_L) (\bar{l}_L \gamma^\mu \nu_L) + g_{V_R} (\bar{c}_R \gamma_\mu b_R) (\bar{l}_L \gamma^\mu \nu_L) \right. \\ &\left. + g_{S_L} (\bar{c}_R b_L) (\bar{l}_R \nu_L) + g_{S_R} (\bar{c}_L b_R) (\bar{l}_R \nu_L) + g_{T_L} (\bar{c}_R \sigma_{\mu\nu} b_L) (\bar{l}_R \sigma^{\mu\nu} \nu_L) \right] + \text{h.c.} \end{aligned}$$

Effective Hamiltonian: FCNC

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \bigg[\sum_{i=1}^6 \mathcal{C}_i(\mu) \mathcal{O}_i(\mu) &+ \sum_{i=7,8,9,10,P,S,...} \mathcal{C}_i(\mu) \mathcal{O}_i \bigg] + \text{h.c.} \\ \mathcal{O}_9^{(\prime)} &= (\bar{s}\gamma_\mu P_{L(R)} b) (\bar{\ell}\gamma^\mu \ell) & \mathcal{O}_{10}^{(\prime)} &= (\bar{s}\gamma_\mu P_{L(R)} b) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ \mathcal{O}_S^{(\prime)} &= (\bar{s}P_{R(L)} b) (\bar{\ell}\ell) & \mathcal{O}_P^{(\prime)} &= (\bar{s}P_{R(L)} b) (\bar{\ell}\gamma_5 \ell) \\ \mathcal{O}_7^{(\prime)} &= m_b (\bar{s}\sigma_{\mu\nu} P_{R(L)} b) F^{\mu\nu} \end{aligned}$$

Combined results, CC, compared to SM

Exp: $R_D = 0.340 \pm 0.030$ $R_{D^*} = 0.295 \pm 0.014$ SM: $R_D = 0.299 \pm 0.003$ $R_{D^*} = 0.258 \pm 0.005$

[cf. HFLAV]

・ロ ・ ・ 日 ・ ・ 目 ・ ・ 目 ・ つ へ で 6/16

Combined results, CC, compared to SM+NP

Angular distributions $\begin{cases} B \to D^* (\to D\pi) \ell \bar{\nu} & \text{can be used to disentangle} \\ \Lambda_b \to \Lambda_c (\to \Lambda\pi) \ell \bar{\nu} & \text{the NP contributions.} \end{cases}$

◆□ ▶ < ⑦ ▶ < ミ ▶ < ミ ▶ ミ ⑦ Q (? 7/16)</p>

SM results and experimental status: FCNC

Results for
$$b \to s\ell\bar{\ell}$$
: $R_Y = \frac{\mathcal{B}(X \to Y\mu^+\mu^-)}{\mathcal{B}(X \to Ye^+e^-)}$

	SM Prediction	Measurements	Tension
$R_{K}^{[1.1,6]}$	1.00(1)	0.847(42)	3.1σ
	[G. Isidori et al.'20]	[LHCb '21]	
$R_{K^*}^{[1.1,6]}$	1.00(1)	$0.69^{+0.11}_{-0.07}$	2.4σ
	[M. Bordone et al.'16]	[LHCb '17]	
$R_{K^*}^{[0.045,1.1]}$	0.91(3)	$0.66^{+0.11}_{-0.08}$	2.3σ
	[M. Bordone et al.'16]	[LHCb '17]	

But also $b\bar{s} \to \ell\bar{\ell}$:

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ < > < ■ < < 8/16</p>

Combined results, FCNC, compared to SM

Explicit scenarios of New Physics

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

10/16

Which NP is compatible with this EFT?

- Should couple preferably to the 3rd family of fermions.
- Should violate LFU.

• Quite natural in GUT or composite Higgs theories

• Other possibilities exist: Z' (only FCNC), 2HDM (tension with $\mathcal{B}(B_c \to \tau \bar{\nu})$)

cess

[D.Marzocca '18].

We directly exclude scenarios that

- only couple to RH particles (\widetilde{S}_1) ,
- allow for diquark couplings,
- pull R_K and R_{K^*} in different directions (\hat{R}_2 [D. Bečirević et al. '15]).

Leptoquark scenarios

Model	$R_{D^{(*)}}$	$R_{K^{(\ast)}}$	$R_{D^{(*)}}\&R_{K^{(*)}}$	
$S_1(\bar{3}, 1, 1/3)$	1	×	×	
$R_2(3, 2, 7/6)$	1	✓/X*	×	Scalar LQ
$S_3(ar{3},3,1/3)$	×	1	×	J
$U_1(3, 1, 2/3)$	1	<	 ✓ 	Vector LQ
$U_3(3, 3, 2/3)$	×	1	×	

 \Rightarrow Scalar Leptoquarks: need at least two: S_1-S_3 [D. Marzocca '18], R_2-S_3 [D. Bečirević et al. '18]

 $\Rightarrow U_1$ Is the only one to accommodate both.

U_1 leptoquark

$$\mathcal{L}_{U_1} = x_L^{ij} \bar{Q}_i \gamma_\mu U_1^\mu L_j + x_R^{ij} \bar{d}_{Ri} \gamma_\mu U_1^\mu \ell_{Rj} + \text{h.c.},$$

Minimal Yukawa structure:

$$x_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & x_L^{s\mu} & x_L^{s\tau} \\ 0 & x_L^{b\mu} & x_L^{s\tau} \end{pmatrix}, \quad x_R = 0.$$

Matching:

$$g_{V_L} = \frac{v^2 (V x_L)_{c\ell} (x_L^{b\tau})^*}{2V_{cb} m_{U_1}^2} \qquad \mathcal{C}_9^{\mu\mu} = -\mathcal{C}_{10}^{\mu\mu} = -\frac{\pi v^2}{V_{tb} V_{ts}^* \alpha_{\rm em}} \frac{x_L^{s\mu} (x_L^{b\mu})^*}{m_{U_1}^2}$$

Compatible with $R_{D^{(*)}}, R_{K^{(*)}}, R_D^{\mu/e}, K^{\mu 2/e2}, \dots$

Needs UV completion! E.g $PS^3 = [SU(4) \times SU(2) \times SU(2)]^3$ $\rightarrow SU(4) \times SU(3) \times SU(2) \times U(1)$ [G. Isidori et al.]

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧ ▶ ○ ≧ ∽ ♀ ○ 14/16

Direct searches at LHC

Prediction: Lepton Flavor Violating decays

Summary and perspectives

• Exciting new LHCb data on R_K and $B_s \rightarrow \mu\mu$ corroborates previous hints of LFUV, now 3.1 σ below SM on R_K .

• When seen as an EFT, LFU ratios and other low-energy observables put constraints on the Wilson coefficients of the theory. $g_{V_L} > 0$, $g_{S_L} = -4g_T > 0$ or $g_{S_L} = \pm 4g_T \in i\mathbb{R}$ and $\mathcal{C}_9 = -\mathcal{C}_{10} < 0$ are preferred

• Lorentz structure of NP can be studied through angular distributions of semileptonic decays at Belle II.

 \bullet $\mathcal{O}(1{\rm TeV})$ extensions of the SM by Leptoquarks states are a promising realization of this EFT.

- Direct searches impose bounds on masses and individual Yukawas.
- No truly minimal scenario exists, however 2 solutions:
 - $S_1 S_3, R_2 S_3$ $U_1 + UV$ completion
- Prediction: Experimentally testable LFV decays rates.

Thank you

<ロト < 部ト < 差ト < 差ト 差 のへの 18/16

Backup slides

<ロト < 部ト < 差ト < 差ト 差 のへの 19/16

Hadronic matrix elements

Expressed in terms of Form Factors:

$$\langle H_f | J_x | H_i \rangle = \sum_a K_x^a F_a$$

With K_x^a kinematic factors (scalar, vector or tensor), and F_a scalar functions of q^2 .

Process	Number of FF
$B \to D \ell \nu$	2 (+ 1 tensor)
$B \to D^* \ell \nu$	4 (+ 3 tensor)
$\Lambda_b \to \Lambda_c \ell \nu$	6 (+ 4 tensor)

Can be obtained from:

- Lattice QCD
- \bullet LCSR, HQET, ...

Hadronic inputs, example $\Lambda_b \to \Lambda_c \ell \nu$

Obtained from a fit to lattice results

$$f(q^{2}) = \frac{1}{1 - q^{2} / (m_{\text{pole}}^{f})^{2}} \begin{bmatrix} a_{0}^{f} + a_{1}^{f} z(q^{2}) \end{bmatrix}$$
$$z(q^{2}) = \frac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}} \qquad t_{0} = q_{\text{max}}^{2}$$
$$t_{+} = (m_{\text{pole}}^{f})^{2}$$

 SM results and experimental status: CC

Results for
$$b \to c\ell\bar{\nu}$$
: $R_Y = \frac{\mathcal{B}(X \to Y\tau\bar{\nu})}{\mathcal{B}(X \to Y\mu\bar{\nu})}$

	SM Prediction	Measurements	Tension
R_D	0.299(3)	0.340(30)	1.4σ
	[FNAL, MILC '15, HPQCD '15] cf. HFLAV	[BaBar, Belle, LHCb]	
R_{D^*}	0.258(5)	0.295(14)	2.5σ
	cf. HFLAV	[BaBar, Belle, LHCb]	
$R_{J/\Psi}$	0.260(4)	0.71(26)	1.7σ
	[HPQCD '20]	[LHCb]	
R_{D_s}	0.297(4)	Soon	-
	[HPQCD '17]	[LHCb]	
$R_{D_s^*}$	0.245(8)	Soon	-
	cf. HFLAV	[LHCb]	
R_{Λ_c}	0.333(13)	Soon	-
	[Detmold et al. '15]	[LHCb]	

<ロ > < 回 > < 目 > < 目 > < 目 > 目 の Q (P 22/16)

Complication for FCNC: Non-local Form Factors

Example for $B \to K \bar{\ell} \ell$:

$$\mathcal{M} = \frac{G_F \alpha}{\sqrt{2}\pi} V_{tb} V_{ts}^* \left[\left(\mathcal{A}_{\mu} + \mathcal{T}_{\mu} \right) \bar{u}_{\ell} \gamma^{\mu} v_{\ell} + \mathcal{B}_{\mu} \bar{u}_{\ell} \gamma^{\mu} \gamma_5 v_{\ell} \right]$$
$$\mathcal{A}_{\mu} \propto \mathcal{C}_7, \mathcal{C}_9 \qquad \mathcal{B}_{\mu} \propto \mathcal{C}_{10}$$
$$\mathcal{T}_{\mu} = \frac{-16i\pi^2}{q^2} \sum_{i=1\cdots 6,8} C_i \int \mathrm{d}^4 x \mathrm{e}^{iq \cdot x} \left\langle K^* | \mathcal{O}_i(0) j_{\mu}(x) | B \right\rangle$$

[Grinstein, Pirjol '04]

- Non-pertubative quantity,
- Poles at the J/Ψ , Ψ' , etc,
- Hard to compute on the lattice.

Complication for FCNC: Non-local Form Factors

Solution: strong cuts on the q^2 region.

[LHCb '16]

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ < ○ < ○ 24/16</p>

 $B_s \to \mu\mu$

Not a ratio, but hadronic uncertainties are well under control:

SM Value New LHCb result Combined

 $\begin{aligned} \mathcal{B}(B_s \to \mu\mu) &= 3.66(14) \times 10^{-9} & \text{[Beneke et al '19]} \\ \mathcal{B}(B_s \to \mu\mu) &= 2.70(36) \times 10^{-9} \\ \mathcal{B}(B_s \to \mu\mu) &= 2.85(33) \times 10^{-9} \\ &= 2.85(33) \times 10^{-9} \\ &= 2.85(33) \times 10^{-9} \end{aligned}$

How to disentangle the New Physics?

LFU ratios insufficient to isolate the Lorentz structure of new physics

- \bullet Need other observables
- Example: $\mathcal{B}(B_c \to \tau \bar{\nu}) \lesssim 30\%$

 $\Rightarrow g_P = g_{S_R} - g_{S_L}$ must be tiny

• Angular distributions

$$B \to D^* (\to D\pi) \ell \bar{\nu}$$
$$\Lambda_b \to \Lambda_c (\to \Lambda\pi) \ell \bar{\nu}$$

 \Rightarrow Plethora of observables, not yet available

<ロト < 団 ト < 臣 ト < 臣 ト 王 の へ () 26/16

Angular distribution

$$\frac{d^{2}\mathcal{B}\left(B \to D^{*}\tau\bar{\nu}\right)}{dq^{2}d\cos\theta} = 4\pi \left[A_{1} + B_{1}\cos\theta + C_{1}\cos^{2}\theta\right]$$

$$\frac{d^{4}\mathcal{B}\left(B \to D^{*}\left(\to D\pi^{+}\right)\tau\bar{\nu}\right)}{dq^{2}d\cos\theta d\cos\theta_{D}d\phi} = A_{1} + A_{2}\cos\theta_{D}$$

$$+ \left(B_{1} + B_{2}\cos\theta_{D}\right)\cos\theta$$

$$+ \left(C_{1} + C_{2}\cos\theta_{D}\right)\cos^{2}\theta$$

$$+ \left(D_{3}\sin\theta_{D}\cos\phi + D_{4}\sin\theta_{D}\sin\phi\right)\sin\theta$$

$$+ \left(E_{3}\sin\theta_{D}\cos\phi + E_{4}\sin\theta_{D}\sin\phi\right)\sin\theta\cos\theta$$

Each coefficient is depends on different combinations of g_i and FF.

In particular $D_4, E_4 \propto Im(g_{S_L}) \Rightarrow$ Sensitive to new CP violating phase.

Example S_1

Lagrangian:

$$\mathcal{L}_{S_1} = y_{ij}^L \bar{Q}_L^{C\,i,a} \epsilon^{ab} L_L^{j,b} S_1 + y_{ij}^R \bar{u}_R^C e_R^j S_1 + \text{h.c.}$$

Tree-level matching:

$$g_{V_L} = \frac{v^2}{4V_{cb}} \frac{y_L^{b\ell'}(Vy_L^*)_{c\ell}}{m_{S_1}^2}$$

$$g_{S_L} = -4g_T = -\frac{v^2}{4V_{cb}} \frac{y_L^{b\ell'}(y_R^{c\ell'})^*}{m_{S_1}^2}$$

$$\mathcal{C}_9^{kl} + \mathcal{C}_{10}^{kl} = \frac{m_t^2(V^*y_L)_{tk}(V^*y_L)_{tl}^*}{8\pi\alpha_{\rm em}m_{S_1}^2} - \frac{v^2(y_L \cdot y_L^{\dagger})_{bs}(y_L^{\dagger} \cdot y_L)_{kl}}{32\pi\alpha_{\rm em}m_{S_1}^2 V_{tb}V_{ts}^*}$$

$$\mathcal{C}_9^{kl} - \mathcal{C}_{10}^{kl} = \frac{m_t^2(y_R)_{tk}(y_R)_{tl}^*}{8\pi\alpha_{\rm em}m_{S_1}^2} \left[\log\frac{m_{S_1}^2}{m_t^2} - f(x_t)\right] - \frac{v^2(y_L \cdot y_L^{\dagger})_{bs}(y_L^{\dagger} \cdot y_L)_{kl}}{32\pi\alpha_{\rm em}m_{S_1}^2 V_{tb}V_{ts}^*}$$

Minimal Assumptions to explain R_K :

$$y^{L} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_{s\mu} & 0 \\ 0 & y_{b\mu} & 0 \end{pmatrix}, \quad y^{R} = 0.$$

<ロ > < 回 > < 目 > < 目 > < 目 > 目 の Q (P 28/16

Example S_1

Considered quantities:

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu\mu)}{\mathcal{B}(B \to K^{(*)}ee)}, \qquad R_D^{\mu/e} = \frac{\mathcal{B}(B \to D\mu\bar{\nu})}{\mathcal{B}(B \to De\bar{\nu})}$$

$$K^{\mu 2/e2} = \frac{\mathcal{B}(K \to \mu \bar{\nu})}{\mathcal{B}(K \to e \bar{\nu})}, \qquad \Delta m_{B_s},$$

$$\mathcal{B}(Z \to \mu\mu), \qquad \mathcal{B}(B \to K\nu\nu)$$

Example: R_2

$$\mathcal{L}_{R_2} = y_R^{ij} \bar{Q}_i \ell_{R\,j} R_2 - y_L^{ij} \bar{u}_{R\,i} R_2 i \tau_2 L_j + \text{h.c.}$$

$$\mathcal{C}_{9}^{kl} = \mathcal{C}_{10}^{kl} \stackrel{\text{tree}}{=} -\frac{\pi v^2}{2V_{tb}V_{ts}^* \alpha_{\text{em}}} \frac{y_R^{sl}(y_R^{bk})^*}{m_{R_2}^2} \\
\mathcal{C}_{9}^{kl} = -\mathcal{C}_{10}^{kl} \stackrel{\text{loop}}{=} \sum_{u,u' \in \{u,c,t\}} \frac{V_{ub}V_{u's}^*}{V_{tb}V_{ts}^*} y_L^{u'k}(y_L^{ul})^* \mathcal{F}(x_u, x_{u'})$$

<ロ><日><日><日><日><日><日><日><日><日><日><日><10</th>

Example: R_2

31/16