In-situ calibration and linearity with Z→ee & Double Higgs production in bbyy final state in ATLAS

Linghua Guo

IJCLab 17/05/2021

Introduction

Thesis work mainly about two parts:

- ATLAS electromagnetic calorimeter calibration and non-linearity
 - \circ In-situ calibration of calorimeter using Z \rightarrow ee events
 - Reduce non-linearity systematic uncertainty, crucial for $H \rightarrow$ diphoton mass measurement
- Double Higgs production in two b-jets and two photons final state
 - SM Higgs self-coupling
 - BSM: exotic self-coupling, new resonant particle

ATLAS experiment

ATLAS EM calorimeter (ECAL)

Sampling calorimeter: Lead as absorber, liquid Argon as active material

4 layer structure (sampling): Presampler: estimate energy loss before "accordion" Strip: high granularity strip separes neutral pion and converted photons Middle: contains most of the shower Back: longitudinal leakage

Accurate calibration required for this complex detector.

ECAL calibration

• MVA calibration:

regression, reconstructed energy to truth energy in MC, applied on both data and MC

• Layer intercalibration:

rebalance relative energy response Strip/Middle between data and MC

Zee in-situ calibration:

calibrate residual data-MC difference with **Z mass peak** (well known process with resonant mass around 91 GeV) diff. arise from electronic mis-calibration, mis-modeling of detector geometry, LAr temperature, etc...

Zee calibration and linearity measurement

After step 4, remaining difference Data vs MC: **1% difference of scale, 0.5% difference on resolution.**

Parameterize data-MC difference in function of pseudorapidity (η):

α(η): scale correction

 $E^{data} = E^{MC}(1 + \alpha(\eta^{calo}))$

• C(η): resolution correction, Gaussian smearing

$$\left(\frac{\sigma(E)}{E}\right)^{data} = \left(\frac{\sigma(E)}{E}\right)^{MC} \bigoplus C(\eta^{calo})$$

Higgs mass precision measurement H→diphoton analysis

ECAL non-linearity: dominant systematic uncertainty of Higgs mass with two photon

Preliminary results: factor ~ 2 reduction of uncertainty thanks to constrain and correlation

ATLAS Run2 Higgs pair production in bbyy final state

11 .

Run: 329964 Event: 796155578 2017-07-17 23:58:15 CEST

CONF-note Moriond QCD: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-016/

Physics motivation

 $m_{H}=\sqrt{2\lambda v^{2}},\,\lambda_{
m HHH}=6\lambda v,\,\lambda_{
m HHHH}=6\lambda$ $\lambda pprox 0.13\, {
m with}\,\, v pprox 246\,\, {
m GeV}, \, m_H pprox 125\, {
m GeV}$ **Direct access in** Out of reach **HH** pairs even for HL-LHC $ext{Self-coupling modifier } \kappa_\lambda = \lambda_{ ext{HHH}}/\lambda_{ ext{HHH}}^{ ext{SM}}$

Tiny cross section ($\sim \sigma_{H}/1000$)

ggF production:

negative interference between triangle and box

VBF production:

large suppression between VVHH and VVH

Motivation to new physics

Invariant mass [GeV]

 $\text{HH} \rightarrow \text{bbyy}$

		I		r i	r	l
		bb	WW	π	ZZ	γγ
	bb	33%				
	WW	25%	4.6%			
	ττ	7.4%	2.5%	0.39%		
	ZZ	3.1%	1.2%	0.34%	0.076%	
	γγ	0.26%	0.10%	0.029%	0.013%	0.0005%

Clean and easy to trigger for low m_{HH}

High signal rate

H--

Previous: <u>HH combination 36.1 fb⁻¹</u>

Current analysis: 139 fb⁻¹ expect better sensitivities

Common preselection

- **Di-photons trigger**: efficiency: **82.9%** for SMHH; **69.5%** for mX=300 GeV
 - HTL_g35_loose_g25_loose (2015-2016)
 - HLT_g35_medium_g25_medium_L12EM20VH (2017-2018)

• Lepton veto

Further selection with boosted decision tree (BDT)

Statistical model (focus of my work)

Maximum likelihood fit performed on $m_{yy} \in [105, 160]$ GeV, simultaneously with all the categories (Non-resonant: 4 cats; Resonant: 1 cat for each m_x)

Likelihood

$$\mathcal{L} = \prod_{c} \left(\operatorname{Pois}(n_{c} | N_{c}(\boldsymbol{\theta})) \cdot \prod_{i=1}^{n_{c}} f_{c}(m_{\gamma\gamma}^{i}, \boldsymbol{\theta}) \cdot G(\boldsymbol{\theta}) \right)$$

Event parametrization

$$N_{c}(\boldsymbol{\theta}) = \mu \cdot N_{HH,c}(\boldsymbol{\theta}_{HH}^{\text{yield}}) + N_{\text{bkg,c}}^{\text{res}}(\boldsymbol{\theta}_{\text{res}}^{\text{yield}}) + N_{\text{SS,c}} \cdot \boldsymbol{\theta}^{\text{SS,c}} + N_{\text{bkg,c}}^{\text{non-res}}$$

Full model pdf

m,, [GeV]

m, [GeV]

14

Non resonant results (focus of my work)

No signal observed, asymptotic limits with CLs have been derived for $\mu_{HH, \kappa\lambda=1}$ and κ_{λ}

95% CL limit on \mu_{HH} assuming \kappa_{\lambda}=1: obs: 4.1xSM (22xSM with 36.1 fb-1) **exp: 5.5xSM** (26xSM with 36.1 fb-1) O(3%) systematic effect

95% CL limit on κ_{λ} : **obs:** [-1.5, 6.7] ([-8.2, 13.2] with 36.1 fb-1) **exp:** [-2.4, 7.7] ([-8.3, 13.2] with 36.1 fb-1)

VBF HH contributes to an improvement of 5%

Resonant results

No signal observed, asymptotic limits with CLs on cross section of each m_x:

m_x [GeV]

Summary

Calibration:

- In-situ calibration of ECAL with Zee events.
- Non-linearity energy response of ECAL

HH→bbyy ATLAS Run2:

Non-resonant: Improvement w.r.t. 36.1 fb-1 Similar results with CMS 95% CL limit on μ_{HH,κλ=1}: 95% 955 4.1xSM

exp: 5.5xSM

95% CL limit on κ_{λ} : obs: [-1.5, 6.7] exp: [-2.4, 7.7]

Resonant:

• Improvement w.r.t. 36.1 fb-1

95% CL limit on $\sigma(gg \rightarrow X \rightarrow HH)$: obs: 610–47 fb exp: 360–43 fb for 251 GeV $\leq m_{\chi} \leq 1000$ GeV

backup

Data and MC

- Full Run 2 data (139 fb⁻¹): previous study with 36.1 fb⁻¹
- ggF HH signal (κ_{λ} = 1,10) at NLO with Powheg-Box v2 + Pythia 8 + κ_{λ} reweighting technique
- VBF HH signal ($\kappa_{\lambda} = 0, 1, 2, 10$) at LO MadGraph5_aMC@NLO v2.6.0 NNPDF3.0nlo + Pythia 8
 - Herwig 7 used for parton shower uncertainty
- Spin 0 resonance (251-1000 GeV) at LO with MadGraph5_aMC@NLO v2.6.1 + Herwig v7.1.3
- Single Higgs and yy-continuum background :

-	Single Higgs and continuum bkg MC					
Process	Generator	PDF set	Showering	Tune		
ggF	NNLOPS [65-67] [68, 69]	PDFLHC [42]	Рутніа 8.2 [70]	AZNLO [71]		
VBF	Powheg Box v2 [39, 66, 72–78]	PDFLHC	Рутніа 8.2	AZNLO		
WH	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO		
$qq \rightarrow ZH$	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO		
$gg \rightarrow ZH$	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO		
$t\bar{t}H$	Powheg Box v2 [73–75, 78, 79]	NNPDF3.0nlo[80]	Рутніа 8.2	A14 [<mark>81</mark>]		
bbH	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.2	A14		
tHq j	MadGraph5_aMC@NLO	NNPDF3.0nlo	Рутніа 8.2	A14		
tHW	MadGraph5_aMC@NLO	NNPDF3.0nlo	Рутніа 8.2	A14		
$\gamma\gamma$ +jets	Sherpa v2.2.4 [56]	NNPDF3.0nnlo	Sherpa v2.2.4	_		
tīγγ	MADGRAPH5_aMC@NLO	NNPDF2.31o	Рутніа 8.2	-		

Prediction of different κ_{λ} with reweighting technique

 $A(k_t, k_\lambda) = k_t^2 B + k_t k_\lambda T.$

319 The amplitude square is written as:

$$|A(k_t, k_{\lambda})|^2 = k_t^4 |B|^2 + k_t^2 k_{\lambda}^2 |T|^2 + k_t^3 k_{\lambda} (B^*T + BT^*).$$

The amplitude square can be further expressed in terms of the amplitude squares of three reference samples chosen. In this analysis, the reference samples are chosen to be $k_{\lambda} = 0, 1, 10$ samples. Since we are only interested in k_{λ}, k_t is taken as 1.

$$|A(1,0)|^2 = |B|^2, (3)$$

$$|A(1,1)|^{2} = |B|^{2} + |T|^{2} + (B^{*}T + BT^{*})$$
(4)

$$|A(1,10)|^{2} = |B|^{2} + 100|T|^{2} + 10(B^{*}T + BT^{*})$$

Using these equations, $|A(k_t, k_\lambda)|^2$ can be expressed in terms of amplitude squares of the three reference samples.

$$|A(k_t, k_{\lambda})|^2 = k_t^2 \left[\frac{90k_t^2 + 9k_{\lambda}^2 - 99k_t k_{\lambda}}{90} |A(1, 0)|^2 + \frac{100k_t k_{\lambda} - 10k_{\lambda}^2}{90} |A(1, 1)|^2 + \frac{k_{\lambda}^2 - k_t k_{\lambda}}{90} |A(1, 10)|^2 \right]$$
(6)

(1) Description from previous 36.1 fb^{-1} note.

(2)

(5)

Linear combination of 3 κ_{λ} samples for generation of other values of κ_{λ}

Event-level weight applied on m_{HH} kinematics

For current Run 2 analysis, $\kappa_{\lambda} = 0$, 1, 20 are used.

Systematic uncertainty estimated with differences between generated and reweighted samples at κ_{λ} =10.

Non resonant BDT input variables

Table 2: Variables used in the BDT for the non-resonant analysis. The *b*-tag status identifies the highest fixed *b*-tag working point (60%, 70%, 77%) that the jet passes. All vectors in the event are rotated so that the leading photon ϕ is equal to zero.

Variable	Definition				
Photon-related kin	ematic variables				
$p_{\rm T}/m_{\gamma\gamma}$	$\frac{1}{\Gamma}m_{\gamma\gamma}$ Transverse momentum of the two photons scaled by the invariant mass $m_{\gamma\gamma}$				
η and ϕ	Pseudo-rapidity and azimuthal angle of the leading and sub-leading photon				
Jet-related kinemat	tic variables				
b-tag status	Highest fixed <i>b</i> -tag working point that the jet passes				
$p_{\rm T}, \eta$ and ϕ	Transverse momentum, pseudo-rapidity and azimuthal angle of the two jets with the highest <i>b</i> -tagging score				
$p_{\mathrm{T}}^{bar{b}},\eta_{bar{b}}$ and $\phi_{bar{b}}$	Transverse momentum, pseudo-rapidity and azimuthal angle of <i>b</i> -tagged jets system				
$m_{b\bar{b}}$ Invariant mass built with the two jets with the high <i>b</i> -tagging score					
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event				
Single topness	ingle topness For the definition, see Eq. (1)				
Missing transverse	momentum-related variables				
$E_{\rm T}^{\rm miss}$ and $\phi^{ m miss}$	Missing transverse momentum and its azimuthal angle				

Resonant BDT input variables

Variable Definition					
Photon-related kinematic variables					
$p_{\rm T}^{\gamma\gamma}, y^{\gamma\gamma}$	Transverse momentum and rapidity of the di-photon syste				
$\Delta \phi_{\gamma\gamma}$ and $\Delta R_{\gamma\gamma}$	Azimuthal angular distance and ΔR between the two photons				
Jet-related kinematic variables					
$m_{b\bar{b}}, p_{\rm T}^{b\bar{b}}$ and $y_{b\bar{b}}$	Invariant mass, transverse momentum and rapidity of th <i>b</i> -tagged jets system				
$\Delta \phi_{b \bar{b}}$ and $\Delta R_{b \bar{b}}$	Azimuthal angular distance and ΔR between the two <i>b</i> -tagged jets				
N _{jets} and N _{b-jets}	Number of jets and number of <i>b</i> -tagged jets				
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event				
Photons and jets-related kinemat	tic variables				
m _{bbyy}	Invariant mass built with the di-photon and <i>b</i> -tagged jets system				
$\Delta y_{\gamma\gamma,b\bar{b}}, \Delta \phi_{\gamma\gamma,b\bar{b}}$ and $\Delta R_{\gamma\gamma,b\bar{b}}$	Distance in rapidity, azimuthal angle and ΔR between the di-photon and the <i>b</i> -tagged jets system				

Table 4: Variables used in the BDT for the resonant analysis. For variables depending on *b*-tagged jets, only jets *b*-tagged using the 77% working point are considered as described in Section 4.1.

Data vs MC: preselection

 $m^*_{bb\gamma\gamma}=m_{bb\gamma\gamma}-m_{bb}-m_{\gamma\gamma}+250\,{
m GeV}$ improve resolution with correlations

Data vs MC: diphoton mass spectrum

Cut flow HH

Non-resonant

Cuts	raw number of events	Yield	Efficiency
N _{xAOD}	1.56e+06	11.3696	100
N _{DxAOD}	1.56e+06	11.3696	100
All events	1.56e+06	11.3685	99.9903
No duplicates	1.56e+06	11.3685	99.9903
GRL	1.56e+06	11.3685	99.9903
Pass trigger	1.30292e+06	9.43463	82.9808
Detecctor DQ	1.30292e+06	9.43463	82.9808
Has PV	1.30292e+06	9.43463	82.9808
2 loose photons	962029	7.00497	61.6112
$e - \gamma$ ambiguity	961632	7.00186	61.5838
Trigger match	913938	6.65969	58.5743
tight ID	799960	5.85507	51.4974
isolation	709300	5.16719	45.4472
rel.p _T cuts	638923	4.64775	40.8786
$m_{\gamma\gamma} \in [105, 160]$	638541	4.64498	40.8542
$N_{lep} = 0$	638371	4.71206	41.4442
$N_j > 2$	635973	4.69411	41.2863
N_j central <6	540328	3.94838	34.7274
leading jet 85% WP	521719	3.81785	33.5793
subleading jet 85% WP	269007	2.01101	17.6875
$N_j btag < 3$	263071	1.96522	17.2847
2 b-jet with 77% WP	210794	1.56478	13.7628
DiHiggs invariant mass <350	23434	0.187622	1.6502
DiHiggs invariant mass >350	187360	1.37716	12.1126

Table 152: Cutflow for Non resonant $x \rightarrow hh \rightarrow yybb$

<u>Resonant</u>

Cuts	raw number of events	Yield	Efficiency
N _{xAOD}	820000	133.994	100
N _{DxAOD}	820000	133.994	100
All events	820000	133.985	99.9927
No duplicates	820000	133.985	99.9927
GRL	820000	133.985	99.9927
Pass trigger	561153	91.8438	68.543
Detecctor DQ	561153	91.8438	68.543
Has PV	561153	91.8438	68.543
2 loose photons	461295	75.6471	56.4554
$e - \gamma$ ambiguity	461105	75.6125	56.4296
Trigger match	415412	68.3971	51.0447
tight ID	354968	58.6712	43.7863
isolation	299286	49.2099	36.7254
rel.p _T cuts	270121	44.4441	33.1686
$m_{\gamma\gamma} \in [105, 160]$	269966	44.419	33.1499
$N_{lep} = 0$	269872	45.2723	33.7867
$N_i > 2$	268619	45.0653	33.6322
N_i central <6	201307	33.2857	24.8411
leading jet 85% WP	199795	33.0534	24.6677
subleading jet 85% WP	90129	14.7167	10.9831
$N_i btag < 3$	88730	14.4868	10.8115
2 b-jet with 77% WP	70698	11.289	8.42498
DiHiggs invariant mass selection	70698	11.289	8.42498
BDT selection	40764	6.52261	4.86782
$m_{\gamma\gamma} \in [120, 130]$	38981	6.24486	4.66053

Table 158: Cutflow for resonant x300 \rightarrow hh \rightarrow yybb

Signal and background modeling

 m_{yy} used as final discriminant variable for both non-resonant and resonant analysis HH signal and single Higgs background modeled with the same DSCB function HH yields f(κ_{λ}) parametrized with 2nd order polynomial, single Higgs yields fixed to SM prediction

Continuum background modelled with exponential function:

Low yy-continuum MC statistic

- Exponential checked by Wald test on data: no preference of higher degree function
- S+B fit on b-only template to compute uncertainty of **spurious signal**

Injection test: bias up to 10% (5%) for non-resonant (resonant) analysis

Background modeling and spurious signal

Non-resonant

Resonant

S+B fit on b-only MC templates:

• Relaxed Criteria: lack bkg MC statistics if $N_{sp} > 2\Delta n_{sig}^{MC \text{ stat}}$ then $\zeta_{sp} = N_{sp} - 2\Delta n_{sig}^{\text{ stat MC}}$ else $\zeta_{sp} = 0$

Pass <u>OR</u> of: $-\zeta_{sp} < 10 \% N_{signal}$ expected $-\zeta_{sp} < 20 \% \sigma_{bkg}$, (Z_{sp} < 20 %) • Wald test on real blinded data Stick to natural form : exp

Category	n _{sp}	Zspur	$p(\chi^2)[\%]$
High mass BDT tight	0.688	0.394	68.8
High mass BDT loose	0.990	0.384	30.5
Low mass BDT tight	0.594	0.378	29.8
Low mass BDT loose	1.088	0.272	26.9

Signal mass [GeV]	n _{sp}	Zspur	$p(\chi^2)[\%]$
251	0.269	0.179	97
260	0.787	0.277	1
270	1.057	0.431	-
280	0.561	0.245	0
290	0.620	0.272	-
300	0.938	0.421	0
312.5	0.538	0.223	-
325	1.075	0.470	0
337.5	0.819	0.399	-
350	0.832	0.457	7
375	0.382	0.303	a
400	0.295	0.182	0
425	0.378	0.310	-
450	0.451	0.421	1
475	0.758	0.594	<u>~</u>
500	0.218	0.178	0
550	0.140	0.155	31
600	0.095	0.115	19
700	0.532	0.397	0
800	0.150	0.152	0
900	0.213	0.286	97
1000	0.269	0.304	71
	Signal mass [GeV] 251 260 270 280 290 300 312.5 325 337.5 350 375 400 425 400 425 450 475 500 550 600 700 800 900 1000	Signal mass [GeV] n_{sp} 251 0.269 260 0.787 270 1.057 280 0.561 290 0.620 300 0.938 312.5 0.538 325 1.075 337.5 0.819 350 0.822 375 0.382 400 0.295 425 0.378 450 0.451 475 0.758 500 0.218 550 0.140 600 0.095 700 0.532 800 0.150 900 0.213 1000 0.269	Signal mass [GeV] n_{sp} Z_{spur} 2510.2690.1792600.7870.2772701.0570.4312800.5610.2452900.6200.2723000.9380.421312.50.5380.2233251.0750.470337.50.8190.3993500.8320.4573750.3820.3034000.2950.1824250.3780.3104500.4510.4214750.7580.5945000.2180.1785500.1400.1556000.0950.1157000.5320.3978000.1500.1529000.2130.28610000.2690.304

27

Non-resonant likelihood scan

Likelihood performed simultaneously and individually with all the categories

Non-resonant S+B fit

Due to the **large definit** in the **High mass BDT tight category** (most sensitive), a negative signal strength ($\mu \approx -2$) has been observed

Figure 45: The observed data fitted with the signal + background model, in the four non-resonant ggF categories.

Systematic uncertainties

Systematic uncertainties:

- Event rate
- Shape of m
 - signal pdf (DSCB)
 - spurious signal from bkg

		Relative impact of the sys	tematic uncertainties in %
Source	Туре	Non-resonant analysis HH	Resonant analysis $m_X = 300 \text{ GeV}$
Experimental			
Photon energy scale Photon energy resolution Flavor tagging	Norm. + Shape Norm. + Shape Normalization	5.2 1.8 0.5	2.7 1.6 < 0.5
Theoretical			
Heavy flavor content Higgs boson mass PDF+ α_s	Normalization Norm. + Shape Normalization	1.5 1.8 0.7	< 0.5 < 0.5 < 0.5
Spurious signal	Normalization	5.5	5.4

Experimental systematics

photon, jets, b-tagging ...

Theoretical systematics

- QCD, pdf+α_s
- HF (100 %) [ggH, VBF, WH]
- BRs, mtop
- Parton Showering (H7 vs Py8)
- κ_{λ} reweighting syst (O(5 %))

Ranking of systematic: expected

Asimov dataset : syst. profiled from bkg-only fit + add μ_{HH} =1 (SM)

Dominant systematic : -**spurious signal** -HF in ggH

Narrow width approximation: scalar

$$\frac{1}{(s-M^2)^2 + M^2\Gamma^2} \xrightarrow{\Gamma/M \to 0} \frac{\pi}{M\Gamma} \delta(s-M^2)$$

$$\lim_{\epsilon \to 0} \frac{\epsilon}{\epsilon^2 + x^2} = \pi \delta(x)$$

$$\frac{1}{\Gamma M^3} \frac{\Gamma/M}{(s/M^2 - 1)^2 + (\Gamma/M)^2} \rightarrow \frac{1}{\Gamma M^3} \pi \delta(s/M^2 - 1) = \frac{1}{\Gamma M} \pi \delta(s - M^2)$$

Narrow width approx. allows to write the propagator (w/ decay width) as dirac function and 1/decay_width.

Dirac function: on-shell particle -> off-shell dropped 1/decay_width: cross section = production cross section * BR

Non resonant results: toys vs asymptotic

For SM HH signal strength μ , toys have been studied for the validation of asymptotic formula, for both stat-only and full model

stat-only	exp	obs
<u>Asymptotic</u>	5.314	3.787
<u>Toys 100k</u>	5.342	3.952
<u>difference</u>	0.5%	4.4%

full-model	exp	obs
<u>Asymptotic</u>	5.465	4.089
<u>Toys 50k</u>	5.912	4.237
difference	8.2%	3.6%

*stat-only limits derived by simply setting all NPs to 0 in the model stat-only: bias up to 4%
full model: for expected, bias increased to 8%

https://indico.cern.ch/event/1016128/contributions/4300571/ https://indico.cern.ch/event/1028088/contributions/4320759/