CROSS: A new technology in bolometric searches for neutrinoless double-beta decay

Madhujith MADHUKUTTAN, IJCLab, Orsay

CAT DOCTORAL SEMINAR

25/05/2021

1

Neutrino

- The Standard Model (SM) describes and predicts the behaviors of the basic building blocks of the universe
- It consists of 6 quarks, 6 leptons, force-carrier particles (gluons, photons, W and Z bosons) and the Higgs boson
- The three neutral lepton particles neutrinos, are tricky and mysterious.

Standard Model says about neutrinos is that

• 3 Flavors : Electron, Muon and Tau neutrino

Current Experiment aims at

• The fundamental nature: Dirac or Majorana

6 quarks (+6 anti-matter

Two neutrino DoubleBeta Decay (2νββ)

$(A, Z) \rightarrow (A, Z+2) + 2e^- + 2v_e^-$

- This process is allowed in the SM of physics and is allowed for 35 nuclides but observed only ~1/3 of them
- $T_{1/2} \sim 10^{18} 10^{24}$ years

Two neutrino DoubleBeta Decay $(2\nu\beta\beta)$

Neutrinoless Double Beta Decay $(0v\beta\beta)$

$(A, Z) \rightarrow (A, Z+2) + 2e^{-} + 2v_{e}$

- This process is allowed in the SM of ٠ physics and is allowed for 35 nuclides but observed only $\sim 1/3$ of them

• $T_{1/2} \sim 10^{18} - 10^{24}$ years

$(A, Z) \rightarrow (A, Z + 2) + 2e^{-1}$

- This process is not allowed in the SM of physics and this happens only if
 - The total Lepton Number violates
 - Neutrinos coincide with their antiparticle, i.e. Majorana Particles
- $T_{1/2} > 10^{24} 10^{26}$ years

Energy spectrum of sum of energies of the emitted electrons for 2νββ and 0νββ

Bolometers

Why Bolometers?

- Most of the favorable $0\nu\beta\beta$ candidates can be studied with this technique.
- High intrinsic energy resolution (0.2% at $Q_{\beta\beta}$).
- High detection efficiency.
- Possibility to construct detectors using radiopure materials and it can be isotopically enriched
- Scalability to a ton scale experiment through arrays

Bolometric Compound

Two bolometers are considered for this search Li_2MoO_4 (Lithium Molybdate) and TeO_2 (Tellurium Oxide)

- Both have excellent energy resolution.
- High Internal radiopurity
- Easy crystal growth with high-quality and high purity crystals.

- $Q_{\beta\beta}$ of ¹³⁰TeO₂ is 2527 keV which is slightly below end-line of the most intensive natural γ -radioactivity.
- $Q_{\beta\beta}$ of $Li_2^{100}MoO_4$ is 3034 keV which is above end line of natural γ -radioactivity.

Background Sources

• Cosmic Rays

 \succ Underground experiment and muon veto.

Cosmogenic Activation

 \succ Store the detector and material underground for a long period before measurement.

• Radioactive contamination from far sources

> Lead and polythene can be used to reduce contamination from far sources like neutrons and gammas.

• Radioactive contamination from near sources

> Detector bulk contamination.

Surface contamination (Background from the surface alphas and betas).

Cryogenic Rare-event Observatory with Surface Sensitivity CROSS Technology

Main objective is to reject α and β surface events due surface contamination.

Surface vs bulk events

High energy phonons are generated More efficient trapping of out-of-equilibrium phonons for surface events by metal (normal or superconductor) Fast energy degradation of out-of-equilibrium phonons in a metal

Acceleration of thermalization of phonons induced by surface events

Journal of High Energy Physics volume 2020, Article number: 18 (2020)

The sensor that will be used in this work is neutron-transmutation-doped germanium thermistor (Ge-NTD). ¹⁰

Cryogenic Rare-event Observatory with Surface Sensitivity CROSS Technology

Dual Heat-Light readout

CROSS Run @ LSC (Canfranc underground Laboratory)

- This run had a data collection for 2369 hours with 90% duty cycle.
- $4 \text{ Li}_2\text{MoO}_4$ and 2 CdWO_4 were studied in this run.

Cubic LMOs (¹⁰⁰Mo) show excellent performance of the dual read-out (heat and light detectors), light-assisted PID, hint on high crystal radiopurity.

CROSS R&D @ IJCLab

- Achieved excellent alpha particle rejection efficiency
- Both α and β particles absorbed close to a metal-coated surface of a Li_2MoO_4 bolometer can be rejected with high efficiency (>90%) by pulse-shape discrimination.
- The grid method is currently our protocol for surface event discrimination.

Conclusion and Future Plans

- To unfold the mysteries of neutrinos, neutrinoless double decay is an important process to look for.
- Bolometric detectors are the most promising detector technologies to study about this process with high sensitivity.
- CROSS technology could allow us to achieve a very low background level 0.01 counts/(tonne y keV) as it separates surface alphas and betas.

CROSS Perspectives

• CROSS demonstrator is planned at the CROSS facility @ LSC with 42 Li_2MoO_4 crystals which holds 6.2kg of ¹⁰⁰Mo.