

Cnes

IJCLab (Laboratoire de Physique des 2 Infinis Irène Joliot Curie)

2nd year PhD seminars

Detection of X-ray sources with MXT telescope of SVOM satellite

Shaymaa Hussein

- Space Variable Objects Monitor.
- A French-Chinese mission
- dedicated to GRBs and other high energy transient on the sky.
- SVOM has a complementary set of ground and space based instruments
- To be launched by the end of 2022.

SVOM satellite

Science observation programs

<u>Core program:</u>

Observe all types of gamma ray bursts \bullet

• Active Galactic Nuclei, Accreting objects, Flaring objects

• MXT will observe X-ray afterglows

MXT will observe these sources in X-ray range to achieve 2 requirements:

- Provide a good photometry and spectroscopy of the source -> determine the astrophysical origin of the source

MXT needs a specific design + onboard scientific software.

<u>General program</u>

Target of opportunity program

Unplanned observations of transient and lacksquarevariable sources, ex: follow-up of multimessenger alerts from experiments like LIGO-VIRGO, the IceCube, the Cherenkov Telescope Array .. etc.

Localize the source down to 2' within few minutes —> better understanding of the source, ex: measure the redshift, host galaxy .. etc.

MXT telescope

Main features:

- ► ~35 kg & ~1.2 m.
- FoV: $1.1^{\circ} \times 1.1^{\circ}$.

MXT optics:

- Micropore optics arranged in a lobster-eye configuration
- Point spread function composed of a central spot \blacktriangleright and cross arms

MXT camera:

PnCCD detector, 256x256 pixels \blacktriangleright

MXT data processing unit:

- handle the instrument power distribution. \blacktriangleright
- telemetry and telecommand management.
- the scientific data processing \blacktriangleright

No reflections

Science software onboard of MXT

implementing the **onboard** scientific software of MXT:

- Camera noise characterization
- Photon reconstruction and source localization
- Data monitoring
- Science telemetry packets (VHF and X-band)
- be fast, optimised and robust against all space conditions.

IJCLab in collaboration with CEA and CNES teams took the responsibility of developing and

* As this algorithm is implement onboard, it is highly constrained, and to achieve the scientific requirements; the algorithm must

Photon reconstruction

- X-ray photons interact with the camera by depositing energies in one or few adjacent pixels forming a pattern depending on it is energy
- Contiguous pixels are clustered together
- Photons are identified using the XRT photon patterns
- Photons are accumulated in a table "photon map" with a **128x128** grid resolution

grade 0

grade 1

grade 5

Pixel over split threshold don't care pixel

Pixel under split threshold

Local maximum over event threshold

grade 6

grade 7

grade 4

grade 8

Photon reconstruction

Photon map and the point spread function PSF are the inputs of the onboard localization algorithm

Photon map

* MXT PSF is energy independent.

* It is twice the camera plane size to cover all incoming directions.

Source Localization

- * To find the peak position, the centroid method (as used for XRT\swift) is simple, but it's limited in low photons intensity.
- A method based in cross correlation between the PSF and the photon map, and the 2D barycentre is implemented onboard *

Cross-correlation

Cross correlate the photon map with the PSF in the Fourier domain.

$$C_{i,j} = \mathcal{F}^{-1}[\overline{\mathcal{F}}\{PSF_{i,j}\}} \cdot \mathcal{F}\{PhMap_{i,j}\}]$$

			-22.9			
			ALC: NO	. * *		
				***	1 - A	
					line to a	24
14 4. m.	•					
	ŝ.			14-1 14-1		
		Tanana				

* First the source peak position is computed in the photon map then it is transformed to the sky location in spherical coordinates

Source Localization

2-D barycentre:

- The peak position (y_p, z_p) is then transformed to polar and azimuthal angle (θ, ϕ) .
- This coordinate is transferred to ground centre for the follow up.

The peak position is given by the 2D barycentre within a window centred on the max value at the correlation map

Advantage of this method appears when a faint source is detected

Source Localization

Localization performance

The performance of the localization algorithm is determined by computing r₉₀ value.

For a given source flux and background counts :

- Generate ~1000 simulations with random source positions within MXT FoV.
- For each simulation run loc algorithm.
- Compute difference between measured and true source positions dr.
- \blacktriangleright r₉₀ is given by the the 90th percentile.

Localization performance

25/05/2021

11

- To compute r₉₀ onboard -> SNR is computed.
- Use transfer function to convert SNR to r_{90} : $r_{90} = a \times SNR^b + c$.
- A quality factor is given for sub ranges of r₉₀ values.
- This quality factor is transferred to the ground, and the follow up is planed depending on this factor

MXT

SNR Vs. R90

Multiple sources in the FoV

It is possible to have > 1 source in the FoV -> extend the algorithm to localize multiple sources.

Method: Iterative subtraction of the previous peak:

Detect the next peak

Conclusion

- The main requirement of MXT is to localize the source rapidly down to 2'
- Localization algorithm are now fully implemented and tested using data from X-ray source test facility at Munich.
- I have characterized the algorithm in different cases: having different source intensities, having source in the edge of the telescope, having corrupted pixels in the camera .. etc.
- In the next year of my PhD I will work in characterizing the onboard scientific algorithm with realistic gamma ray bursts observation scenarios.
- Use data from previous similar mission like xrt\swift and convert it to MXT observation.
- What we can learn about GRBs with MXT?

