

Hiding WIMPs?

G. Bélanger

LAPTh, Annecy-le-Vieux

WIMP DM

- DM a new stable WIMP is most studied candidate
- Despite strong experimental programs no signs of WIMPs
- Well-motivated New Physics model has yet to be singled out
- Certainly important to consider other possibilities for DM formation and DM candidates – different scales and interaction strengths
- Does it mean we should give up on WIMPs?
- Will current and planned searches allow to close the argument?

Outline

- Motivation
- More mediators
- More dark matter
- Conclusions

WIMP DM

• When rate of annihilation drops below expansion rate Γ < H -> WIMPsfall out of equilibrium and freeze-out (at T_{FO} ~m/20) density depends only on expansion rate

$$\frac{dn}{dt} = -3Hn - \langle \sigma v \rangle \left[n^2 - n_{eq}^2 \right]$$

$$\chi \bar{\chi} \to e^+ e^-, \mu^+ \mu^-, \tau^+ \tau^-, q\bar{q}, W^+ W^-, ZZ$$

- Weak couplings and weak masses -> $\Omega h^2 \sim 0.1$
- Simple estimate modified if 1) resonance 2) t-channel 3) co-annihilation 4)...

$$\Omega_X h^2 \approx \frac{3 \times 10^{-27} \text{cm}^3 \text{s}^{-1}}{\langle \sigma v \rangle}$$
.

Probing the nature of dark matter

- All determined by interactions of WIMPS with Standard Model
- Strong connection relic/ID (only difference is v)
- Not necessarily the same particles/process play dominant role, eg annihilation into dark sector can dominate relic no effect on collider searches

Singlet scalar

- Simplest SM extension : one singlet scalar + Z₂ symmetry
- Improves stability of Higgs sector
- Higgs portal : one coupling (to Higgs) drives all DM observables relic,DD,ID

$$V_{Z_2} = \mu_H^2 |H|^2 + \lambda_H |H|^4 + \mu_S^2 |S|^2 + \lambda_S |S|^4 + \lambda_{SH} |S|^2 |H|^2$$

Direct detection

• Need large enough coupling for DM annihilation – but constraints from DD

Singlet scalar

Cline et al, 1306.4710

- If annihilation is efficient enough for relic density to be satisfied -> strong constraint from direct detection (unless DM mass >TeV, DM mass ~ mh/2)
- If $m_S < m_h/2$: Higgs invisible also constrain the model Djouadi, Lebedev, Mambrini, Quevillon, 1112.3299

- To relax constraints on WIMPs: uncorrelate relic density/ direct detection
- Several ways to do that (beyond exploiting resonance effect)
 - Pseudoscalar mediator(s)
 - New particles and new processes for relic (e.g. co-annihilation, semi-annihilation...)
 - More DM
- What about signatures, in particular LHC

Case 1 : pseudoscalar mediator(s)

- Fermion DM + 1 or 2 pseudoscalar mediators relax DD constraint
 - Loop-induced contribution to DD much weaker, current experiments do not yet probe O(1) couplings -- Li, Wu, 1904.03407
- Simplified model (Banerjee, GB, Bhatia, Fuks, Raychaudhuri, 2110.15391)

$$\mathcal{L}^{(0)} \supset -\sum_{q} \left(\frac{iy_q g_q}{\sqrt{2}} \bar{q} \gamma_5 q \ P_1^0 \right) - iy_\chi \ \bar{\chi} \gamma_5 \chi \ P_2^0 \ . \qquad \begin{pmatrix} P_1^0 \\ P_2^0 \end{pmatrix} = \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} P_1 \\ P_2 \end{pmatrix} .$$

$$\mathcal{L}_{\text{int},2} \supset A_{P_1} F_{\mu\nu} \widetilde{F}^{\mu\nu} P_1 + A_{P_2} F_{\mu\nu} \widetilde{F}^{\mu\nu} P_2 + G_{P_1} G_{a,\mu\nu} \widetilde{G}^{a,\mu\nu} P_1 + G_{P_2} G_{a,\mu\nu} \widetilde{G}^{a,\mu\nu} P_2 + m_{11} P_2 P_1 H + m_{22} H P_1 P_1 + m_{33} H P_2 P_2.$$

- m11, m22, m33 fixed to satisfy upper limit on Higgs decay + narrow width for P_2 -> P_1H + assume maximal mixing θ = $\pi/4$
- Constraints: relic density, indirect detection, LHC

$$pp o \chi \bar{\chi} j$$
 with $p_T(j) > 100 \; {\rm GeV} \, , \qquad pp o \chi \bar{\chi} H \, , \qquad pp o \chi \bar{\chi} t \bar{t} \, .$
$$\qquad \qquad \boxed{ {\rm pp} {->} \; {\rm P_1 H} \qquad pp o P_2 o P_1 H o \bar{\chi} \chi H \, . }$$

- For M_DM >100 GeV, model mostly escapes ID constraints
- Region compatible with relic barely probed by current monoX searches

- Recast of Run2 ATLAS and CMS with MadGRAPH5_aMC@NLO+MadAnalysis5
- Mono-X searches at HL-LHC will probe part of the model – regions hard to probe: resonance and annihilation into mediators (no couplings of DM to SM required)

Case 2: Two dark sectors

- Lightest particle of each dark sector is stable (transformation under a discrete symmetry determines the dark sector)
- If decoupled just two independent sectors
- In general: interactions involving 2 dark + SM sectors

Two dark sectors

- Assisted freeze-out: no interactions DS2-SM interactions DS1-DS2 determine the abundance of DM2 (GB, JC Park, JCAP03 (2012) 038)
- DM conversion : include also DS2-SM
- Semi annihilation (Hambye, 0811.0172; D'Eramo, Thaler 1003.5912)
 - processes involving different number of dark particles 11-> 1*0 (Z_3) or 11->20 (Z_4)

Generalization Boltzmann equation

Equations for number density

$$\frac{dn_1}{dt} = -\sigma_v^{1100} \left(n_1^2 - \bar{n}_1^2 \right) - \sigma_v^{1120} \left(n_1^2 - \bar{n}_1^2 \frac{n_2}{\bar{n}_2} \right) - \sigma_v^{1122} \left(n_1^2 - n_2^2 \frac{\bar{n}_1^2}{\bar{n}_2^2} \right) - 3Hn_1$$

$$\frac{dn_2}{dt} = -\sigma_v^{2200} \left(n_2^2 - \bar{n}_2^2 \right) + \frac{1}{2} \sigma_v^{1120} \left(n_1^2 - \bar{n}_1^2 \frac{n_2}{\bar{n}_2} \right) - \frac{1}{2} \sigma_v^{1210} \left(n_1 n_2 - n_1 \bar{n}_2 \right)$$

$$-\sigma_v^{2211} \left(n_2^2 - n_1^2 \frac{\bar{n}_2^2}{\bar{n}_1^2} \right) - 3Hn_2,$$

- Details of model, masses couplings determine the importance of semiannihilation, DM conversion
- Can work both ways: increase or decrease abundance of each DM
- Included in micrOMEGAs_4.1 and newer versions

Example: Inert doublet+singlet

- Scalar sector with one extra doublet + singlet
- Z_4 symmetry : X_S = 1, X_H =2 , S is first DM, lightest neutral component doublet (H or A) is second DM, stable only if $M_H < M_S / 2$,

$$V_{Z4} = \lambda_{1} \left(|H|^{2} - \frac{v^{2}}{2} \right)^{2} + \mu_{2}^{2} |H'^{2}| + \lambda_{2} |H'|^{4} + \mu_{S}^{2} |S|^{2} + \lambda_{S} |S|^{4} + \frac{\lambda_{S}'}{2} (S^{4} + S^{\dagger 4})$$

$$+ \lambda_{S1} |S|^{2} |H|^{2} + \lambda_{S2} |S|^{2} |H'|^{2}$$

$$+ \lambda_{3} |H|^{2} |H'|^{2} + \lambda_{4} (H^{\dagger}H') (H'^{\dagger}H) + \frac{\lambda_{5}}{2} \left[(H^{\dagger}H')^{2} + (H'^{\dagger}H)^{2} \right]$$

$$+ \frac{\lambda_{S12}}{2} (S^{2}H^{\dagger}H' + S^{\dagger 2}H'^{\dagger}H) + \frac{\lambda_{S21}}{2} (S^{2}H'^{\dagger}H + S^{\dagger 2}H^{\dagger}H')$$

$$\lambda_{Ah} = \lambda_{3} + \lambda_{4} - \lambda_{5}$$

• Annihilation(λ_{S1} , λ_{Ah}), assisted FO(λ_{S2} , $\lambda_{S1}\lambda_{Ah}$), semi-annihilation (λ_{S12} , λ_{S21})

Features of Inert doublet

- Simple SM extension : one extra doublet + Z₂ symmetry
- Dark sector: Charged Higgs + Scalar + Pseudoscalar (either neutral is DM)
 - Deshpande, Ma, PRD18 (1978) 254; Barbieri, Hall, Rychkov, PRD74 (2006) 015007; Lopez-Honorez et al JCAP02 (2007) 028
 - Can help EW-baryogenesis
- No coupling of H₂ to fermions
- Most efficient annihilation into gauge bosons, also fermions and coannihilation
- relic density OK in three regions: $m_H^{\sim}55-60$, $m_H^{\sim}65-75$ GeV, $m_H^{\sim}>500$ GeV

Signatures of Inert doublet

- Direct detection: From just allowed to very suppressed.
- Indirect detection : photons

• Constraints from LHC: dileptons (GB et al 1503.07367), trileptons (Miao, Su 1005.0090; Gustaffsson et al 1206.6316), monojet, mono-H, mono-Z, (Poulose, 1604.03045; Belyaev et al 1612.00511), HSCP, disappearing tracks (Belyaev et al, 2008.08581)

Z4-Inert doublet + singlet

- Interactions between Dark sectors (conversion)
 - GB, Kannike, Pukhov, Raidal, 1202.2962
- $M_S>M_H$ at $T_{FO}(S)$ SS->HH increases annihilation of S decrease Ω_1 , increase Ω_2 . Vice versa if H is heavier.

$$M_S$$
=250 GeV, M_A =120GeV M_H = M_{H+} =125GeV λ_{S1} = 10⁻³

Semi-annihilation also typically reduces abundance of S

Z4-Inert doublet + singlet

- Scan over parameter space : m_S,m_A,m_{H+},m_H, 8 couplings
- Theoretical constraints: perturbativity, unitarity, vacuum stability, EW precision, LEP(Z_{inv}), LEP(H+), H_{inv}, relic density, Xenon1T
- As expected λ_{S1} can be small but some DM conversion and/or semi-annihilation required

Z4-Inert doublet + singlet

- Scan over parameter space : m_S,m_A,m_{H+},m_H, 8 couplings
- Theoretical constraints: perturbativity, unitarity, vacuum stability, EW precision, LEP(Z_{inv}), LEP(H+), H_{inv}, relic density, Xenon1T
- Full range of masses is allowed for singlet and doublet, S is usually dominant

Direct detection probes

- Best probe of the model
- For XENON-1T: recoil energy spectrum includes the sum of S and A
- XENONnT & DARWIN can probe both singlet and doublet components
- Incomplete coverage

MonoX signatures

• Collider signatures: monojet, monoZ, monoH in the IDM

• Sensitive mainly to large couplings λ_{Ah} (or λ_{S1} for S)- no useful constraint

Using recast from Belyaev et al, 1612.00511

Indirect detection

• Annihilation channels with large cross-sections, WW/ZZ (as for IDM) also new channels: SS->H+W-, SS-> H+H-,SA-> ZS

- Can be probed by FermiLAT (Dwarfs) and by AMS02 (antiprotons) will use only WW, ZZ
- Antiprotons: dependence on DM profile and on cosmic rays propagation parameters fit to B/C measured by AMS

$$\rho_{\rm DM} = \rho_0 \, \left(\frac{R_0}{r}\right)^{\gamma} \left(\frac{R_0 + r_s}{r + r_s}\right)^{3 - \gamma} \, , \label{eq:rhomogeneous}$$

Reinert, Winkler, JCAP01 (2018) 055

Indirect detection

• Also within reach of CTA (photons) – include all channels, A. Acharya et al, JCAP01(2021) 057

$$Q_a(E) = \frac{1}{2} \langle \sigma v \rangle \left(\frac{\rho}{m_A} \right)^2 \left(\xi_A + \frac{m_A}{m_S} \xi_S \right)^2 \frac{dN_a}{dE}$$

- Large fraction of the parameter space is within reach of CTA and/or XENON-nT
- Beyond reach : doublet DM O(100)GeV+

Special case: nearly degenerate doublet

- Refined analysis of the region with very compressed spectrum
- Note that even in completely degenerate case: loop corrections will partially lift degeneracy
- Charged Higgs can be probe at LHC -> heavy stable charged particle or disappearing track H^+ -> π^+ +DM
- Smodels_2.0 to implement HSCP (Ambrogi et al 1811.10624) and disappearing tracks constraints compatible with Belyaev et al 2008.08581

Special case: nearly degenerate doublet

- Dedicated scan in the region where $M_H = M_A + 200 \text{keV}$, $M_{H+} M_A$: 1-500MeV
- Three neutral stable particles H,A (about same relic) and S
- Here the doublet $(\Omega_2 = \Omega_H + \Omega_A)$ can be dominant

Direct/indirect

- Both S and A can be within reach of XENONnT
- Constraints from FermiLAT, AMS and prospects for CTA

What about LHC?

- Strong constraints from LHC both HSCP and disappearing tracks
- Other LHC signatures challenging (soft decay products) and λ_{Ahh} coupling small— to be investigated
- Monojet @ HL-LHC : pp->AHj could constrain DM masses up to 200 GeV for any λ_{AH} (Belyaev et al 1809.00933)

Current LHC constraints – GB, Mjallal, Pukhov, 2108.08061

Monojet, HL-LHC

Here only points out of reach of future Darwin &CTA

Complementarity DD/ID/HL-LHC

Can full parameter space be probed in other channels or with HE-LHC or e+e- (for prospects in IDM see T. Robens 1908.10809)

Conclusion

- Although classical WIMP models are severely contrained from relic/LHC/direct detection/indirect detection – WIMPs are not dead
- WIMP models can be constructed to avoid certain constraints, but strategy of direct/indirect/collider searches offer powerful probes of WIMPs
- Collider searches relevant also for case where WIMP is subdominant
- It will become more and more difficult to hide WIMPs
- Note: if one of the DM is a FIMP easier to make all signals disappear

Signatures of Inert doublet

- Direct detection: From just allowed to very suppressed.
- Indirect detection : photons

Constraints from LHC: dileptons (GB et al 1503.07367), trileptons (Miao, Su 1005.0090; Gustaffsson et al 1206.6316), monojet, mono-H, mono-Z, (Poulose, 1604.03045; Belyaev et al 1612.00511), HSCP, disappearing tracks (Belyaev et al, 2008.08581)

Eitenauer, Goudelis, Heisig, 1705.01458

