gamma-ray halos around pulsars

Pierrick Martin (CNRS/IRAP, Toulouse)

Talk fed by discussions with Alexandre Marcowith, Allard Jan van Marle, François Brun, Marianne Lemoine-Goumard, Fabio Acero, Carmelo Evoli

Discovery/confirmation of pulsar halos

Discovery/confirmation of pulsar halos

- Modeling the observed intensity profiles
 - ▶ ~10% of spin-down power into >1GeV pairs
 - continuous injection spectrum with power-law index ~2.3 (above ~100GeV)
 - homogeneous diffusion-loss transport in the ISM
 - suppressed diffusion within at least 20-30pc, with DHALO~DISM/100
 - inverse-Compton scattering of ambient photons (CMB, IR)

At the crossroads of hot topics

Pulsars = major players in the VHE/UHE sky

47/78 sources in HGPS coincident with energetic pulsars
14/20 new 3HWC sources (with no previous TeV counterpart)
10/12 of LHAASO >100TeV sources

(3-4x more accounting for pulsars not beamed towards us)

+ spectral and energetic arguments supporting IC from pulsars

Abdalla et al. 2018a/b, Albert et al. 2020/2021, Cao et al. 2021, Linden et al. 2017 Sudoh et al. 2021, Breuhaus et al. 2021

At the crossroads of hot topics

Behaviour of CRs in the vicinity of sources

Freshly released CRs modifying their environment: time/energy-dependent **confinement** Possible **impact** on certain **observables** (grammage, gamma-ray emission) Opportunity to **probe earlier acceleration** stages ($E_{max}(t)$, PeVatron,...)

Confusion in the definition of halos

Confusion about the definition and boundaries of the halo phenomenon

Obs: hard to differentiate from PWNe
Phy: uncertainty about the medium in which halos develop

Additional complications from likely existence of hybrid/transitional objects

Giacinti et al. 2020 Sudoh et al. 2019/2021

Minimalist definition:

emission structure produced by pairs escaped from the shocked pulsar wind (very inclusive but not very practical)

Halo spectrum

Geminga-like halo model injection-diffusion-loss

3x10³⁴ erg/s @ 320 kyr spin-down time scale 3kyr 1kpc distance

30% acceleration efficiency BPL injection spectrum index 1.5/2.3 E_{br}=0.1TeV

two-zone diffusion $D_{HALO} = D_{ISM}/300 \text{ within 50pc}$ $B = 3 \mu G$ $ISRF \sim 0.3 eV/cm^3 \text{ in CMB,IR,O}$

Halo spectrum

> 1-10TeV: loss-limited regime current spin-down power recent injection and transport

<0.1-1TeV: diffusion-limited regime integrated injection history past transport conditions (incl. proper motion)</p>

Decomposition of spectrum and profiles as function of injection start time

Halo morphology

Di Mauro et al. 2019 One-zone diffusion model

energy-dependent morphology (both extent and profile) maximum extent reached from <100GeV to >1TeV (age-dependent)

Effects of proper motion

Di Mauro et al. 2019 One-zone diffusion model

Geminga halo detected in Fermi-LAT observations

Proper motion evidenced with significance $> 4\sigma$

Variety of source morphologies and pulsar offsets depending on injection history (spin-down history+ injection parameters)

diffusive properties of the medium (self-confinement or externally-driven)

Zhang et al. 2020

Questions raised by the HAWC observations

- Observationally
 - Full extent of the phenomenon (in space/energy)?
 - Are these two objects representative of a (much) larger population?
- Physically
 - How is such an extended and long-lasting confinement achieved?
 - Are the pulsars playing any role in this?
 - ... or do they just happen to be located in specific environments?

Physical extent of halos

- Bounds on the low-diffusion region
 - >20-30pc: HAWC intensity profile (+AMS-02)
 - <50-100pc: LAT and MAGIC measurements</p>
 - <kpc: average Galactic diffusion coefficient (from B/C,...)</p>

Broadband/multiwavelength objects

Geminga halo detected in Fermi-LAT observations Proper motion evidenced with significance $> 4\sigma$

Di Mauro et al. 2019a

- At lower energies
 - No diffuse X-rays around Geminga, B<1microgauss (Liu et al. 2019)
 - Prospects for detection with eRosita sub-pc to 10s pc (Li et al. 2021)

Rapidly growing population?

- Under the (strong) assumption that all pulsars develop halos:
 - Highly populated source class
 - Several 10s already detected as unIDs in HGPS/HAWC surveys
 - Non-negligible contribution as diffuse from unresolved sources
 - Now also including MSPs?

A promising source class

Galactic model of
SNRs+PWNe+Halos
Mock population
of normal pulsars
PWN stage ~0-50kyr
Halo stage ~50-400kyr
Geminga-like 50pc halo model
ISRF and B-field Galactic models

Martin et al. (in prep.)

- Synthetic halo population (~2600 objects)
 - Flux distribution similar to PWNe down to 10mCrab
 - PWNe+Halos saturating the known population (incl. unIDs)

A promising source class

Galactic model of
SNRs+PWNe+Halos
Mock population
of normal pulsars
PWN stage ~0-50kyr
Halo stage ~50-400kyr
Geminga-like 50pc halo model
ISRF and B-field Galactic models

Martin et al. (in prep.)

Detectable halo population

- ~20 already in 3HWC, ~30 already in HGPS, >100 in reach of CTA
- Note: flux > sensitivity only (extension accounted for)
- Actual data analysis: lots of confusion, non-trivial morphologies, backgrounds

Turbulence (kinetic)

Pair halos as dynamical objects

t<10kyr: powerful pulsar, turbulence growth, particles can still escape 10kyr<t<100kyr: weaker pulsar, turbulence damping, relaxation

Dependent on injection history and spectrum, turbulence model for wave damping

Problems: 1) growth in PWN stage, 2) rapid relaxation, 3) proper motion (for maximum injection efficiency, hard injection spectrum, 1D)

Turbulence (fluid)

Fluid option: externally-driven

From individual 40-500TeV electron trajectories in 3D realizations of turbulence

HAWC measurement compatible with turbulence with B_{rms} =3 μ G and L_c <5pc Lopez-Coto & Giacinti 2018

Turbulence inherited from parent SNR or stellar-wind bubble Fang et al. 2019

Open questions and challenges (certainly a non-exhaustive list)

Theory/Modeling

- What is the origin of the efficient confinement around (some) pulsars?
 - Kinetic option:
 - Is turbulence generation by streaming pairs a possible solution at all?
 - Power problem if injection starts after few 10 kyr with typical PWN spectrum
 - Magnetic turbulence saturation levels and spectrum including cascade?
 - Could there be an additional role of accelerated protons?
 - Could non-resonant streaming instability help?
 - ... numerical simulations produce some charge separation (Bucciantini 2020)
 - Other instabilities e.g. firehose?
 - Time evolution of the injection term, spectrum and efficiency
 - Fluid option:
 - Are known halos probing regions of turbulence with reduced coherence length?
 - What would be their origin? How often can they be found?
 - ❖ If turbulence was imparted by parent SNR, can it last long until ~300-500kyr?
 - Impact on other observables, e.g. direct CR measurements?

Serious challenges on the numerical side owing to the variety of time/spatial scales involved

Theory/Modeling

Bucciantini 2020, Pavan et al. 2015, Abeysekara et al. 2017

Observations/Data analysis

- What are the properties of halos as a population?
 Do most pulsars go through a halo phase?
 - Gamma-rays
 - How to tell PWNe apart from halos in existing/forthcoming observations?
 - What fraction can we hope to detect/identify/exploit?
 - ...HESS J1825-137 illustrates the challenge
 - What is the potential/added value of IACTs here?
 - Other wavelengths
 - X-ray halos: problems with extension, absorption, backgrounds
 - Radio halos: more or less the same issues
 - Probes of interstellar turbulence
 - What are the prospects for a better understanding of turbulence in the disc?

Very likely that gamma-rays cannot do it alone