The Paris-Saclay AstroParticle Symposium

Diffuse flux of ultra-high energy photons from cosmic-ray interactions in the disk of the Galaxy and implications for the search for decaying super-heavy dark matter

Corinne Bérat, Carla Bleve, Olivier Deligny, François Montanet, Pierpaolo Savina, Zoé Torrès

Estimate of the expected photon flux above 10^{17} eV from the interactions of UHECRs with the matter in the Galactic disk

If this flux is detected :

* possible probing of the cosmogenic flux originating from π_0 decay

UHECRs + photon fields

 $\phi_{\gamma}^{cosmo} + \phi_{\gamma}^{gal}$ \Rightarrow knowledge of the background hiding the emission of sources in the Galaxy

Galaxy gas irradiated by UHECRs

* detection of localized fluxes \Rightarrow discovery of CR sources

* highlight the presence of Super Heavy Dark Matter (SHDM) produced in the early Universe and decaying today

Isotropy of UHECRs \Rightarrow Isotropic irradiation \Rightarrow isotropic emission

Emission of UHE photons : inelastic interaction of UHECRs + interstellar gas → light mesons decaying into pions

$$q_{\gamma}(E, \mathbf{x}) = 4\pi \sum_{i,j} n_{j}(\mathbf{x}) \int_{E}^{\infty} dE' \phi_{i}(E') \sigma_{ij}(E') \frac{dN_{ij}^{\gamma}}{dE}(E', E).$$
Local density of gas (j)
Local density of

Cosmic Ray Flux and Mass Composition

At UHE : CR flux and mass composition known by indirect mesurement of air showers produced in the atmosphere

Energy-dependent mass composition using the distribution of Xmax measurements from the Pierre Auger Observatory

> With 3 hadronic interaction models Sibyll2.3 EPOS-LHC QGSJetII-04

All particle spectrum above 10^{17} eV measured at the Pierre Auger Observatory : largest cumulated exposure + single detector type

Interstellar gas density in the Milky Way

Interstellar medium = molecular and atomic H (90%) + He (10%)

Models of the gas distribution in the galaxy :

* Model A : large scale properties axial/up-down symmetric distribution [Lipari & Vernetto, Phys. Rev. D 98, 043003]

* Model B : smaller scale spiral arms and disk bulge modeled [Jóhannesson et al, 2018 ApJ 856 45]

Probing of the different gas elements :

* Molecular H : impossible to observe directly CO excited from its collisions with H_2 -> frequency of CO rotational transition -> calibration factor

* Helium : follows the H distribution (factor 10%)

Zoé Torrès, 26/10/21

Photon production

UHECRs irradiating interstellar matter result in the production of light mesons $\,(\pi_{0},
ho,K,\eta...)$

 $\pi_0 \rightarrow 2\gamma$

Inelastic cross sections and the energy spectra of photons : Cosmic Ray Monte Carlo (CRMC) package C. Baus, T. Pierog and R. Ulrich https://web.ikp.kit.edu/rulrich/crmc.html

Zoé Torrès, 26/10/21

Diffuse flux of UHE photons

* the flux is concentrated around the galactic plane, as expected

* a factor ${10}^{-5}$ lower than the UHECRs spectrum, ${10}^{-6}$ at highest energy

Smooth distribution along the longitude

Maximum value $\simeq 5.0 \times 10^{-1}$ /km²/yr/sr

Model B

Brighter in the innermost regions

Maximum value (smaller than Model A) at $~|l|\simeq 55^{\circ}$

Zoé Torrès, 26/10/21

Comparison to current upper limits

Comparison to a search for point-like sources :

* upper limits taken from the Auger collaboration [ApJ, 789, 160 (2014)]

* converted our directional flux into a collection of point-like sources (Averaged over a 5°-band over the galactic plane)

Directional photon flux

$$\rightarrow \phi(l) = \frac{1}{2.sin5^{\circ}} \int dE_{CR} \int db.sinb \int d\mathbf{n}'.f(\mathbf{n}',\mathbf{n}).\phi(E_{CR},\mathbf{n}')$$

Point-spread function of the PAO (gaussian filter)

Results:

* 3 orders of magnitude below current limits : unreachable with current detectors

* upper limits are reported for a $E^{-2}\,$ photon flux and would be higher for steeper spectra

Astroparticle Symposium

10-Jpper limits, Auger Collab. (2014) Jas model A 10^{-2} $\psi_{\gamma}(l) \, (km^{-2}yr^{-1})$ Energy range = $[10^{17.3}, 10^{18.5}]$ 10-10-4 **EPOS-LHC** 10-5 -150-100-50 Galactic longitude l (deg.) Systematics = all particle energy spectrum

+ hadronic models

Comparison to current upper limits

Comparaison to other searches for a diffuse photon flux :

- * performed by several other experiments : (Auger, EAS-MSU, KASCADE-Grande, TA) * $\phi(E,\mathbf{n}) o \phi(>E)$
- * cosmogenic flux from π_0 decay : dependent on the primary UHECR mass
 - : a mix from p to Fe primaries that fits the Auger data [Bobrikova et al., ICRC 2021, PoS]

Results :

* for energies $\approx (10^{17} \rightarrow 10^{18.5}) \,\text{eV}$: 2.5/3 orders of magnitude below other limits Θ

* higher for larger energy thresholds

* the cosmogenic flux computed here is dominant between 10^{17} and 10^{18} eV

Zoé Torrès, 26/10/21

Implication for search of SHDM

- * If dominant : could prevent the probing of sources and/or evidence of SHDM in the Galaxy
- $* \phi^{DM}$ can be observed if SHDM particles have long enough lifetime $\, au_X$

Zoé Torrès, 26/10/21

Astroparticle Symposium

1 <u>1</u>

Summary and outlook

* the integrated UHE photon flux above 10^{17} eV amounts to 10^{-2} /km²/yr/sr (a few ° around the Galactic plane)

* it is the dominant cosmogenic flux between 10^{17} and $10^{18}\,{
m eV}$

* out of reach with current observatories

* sets a floor below which other signals will be overwhelmed : relevant for SHDM searches

* Below $M_X \approx 10^{11} \text{GeV}$: sets a ceiling region for the lifetime τ_X of SHDM particles

* Future study : UHE neutrino flux produced from charged pions and neutrons decay

Thank you for your attention

Zoé Torrès, 26/10/21