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Today Next decade

Turn predictions
into data-driven tests

Key developments:
Bigger detectors → larger statistics

Better reconstruction
Smaller astrophysical uncertainties

Made robust and meaningful by accounting 
for all relevant particle and astrophysics uncertainties

TeV–PeV ν > 100-PeV ν
Make predictions for
a new energy regime

Key developments:
Discovery

New detection techniques
Better UHE ν flux predictions
Similar to the evolution of cosmology to a 
high-precision field in the 1990s



A general framework
(Focused on UHE ν and IC-Gen2 Radio)
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Flavor structure of the UHE ν fluxes
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Use NuPropEarth for in-Earth propagation
[github.com/pochoarus/NuPropEarth]

Interactions:
▸ BGR18 νN deep inelastic scattering (DIS) on partons (dominant)
▸ DIS on photon field of nucleons
▸ Coherent νA scattering
▸ Elastic & diffractive νN scattering
▸ ν scattering on atomic electrons

Sub-dominant: 
increase attenuation 
by ~10%

Matter inside Earth:
▸ Density: Preliminary Reference Earth Model
▸ Top layer of ice
▸ Varying element composition (non-isoscalar)

We propagate νe, νe, νμ, νμ, ντ, ντ separately

Includes ντ regeneration:
 ▸ TAUSIC: Energy losses of intermediate τ 
 ▸ TAUOLA: Distribution of τ decay products

MB, Valera, Glaser, In preparation
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Detector geometry ν

ν

ν

ν

Work led by Víctor Valera

Underground cylinder

Area of lid: 500 km2

Height: 1.5 km

Detector geometry now 
available in NuPropEarth

[github.com/pochoarus/NuPropEarth]

MB, Valera, Glaser, In preparation

https://github.com/pochoarus/NuPropEarth
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Detector effective volume

IC-Gen2 has stations containing:
 ▸ Shallow antennas
 ▸ Deep antennas

We simulate the effective volume of 
with NuRadioMC & NuRadioReco

Note: For now, we turned off the 
contribution of secondary leptons

For νe CC: Use the CC Veff 
For νμ CC, ντ CC, νl NC: Use the NC Veff 

No sensitivity to downgoing ν due to little 
overhead ice volume 
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Total volume = 169 shallow-only stations + 144 hybrid (shallow+deep) stations
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Real event rate

Includes:
▸ Flux
▸ In-Earth propagation
▸ Effective volume
▸ Inelasticity distribution

Eν: Neutrino energy
y: Inelasticity

cos θz: Neutrino direction

Detected event rate

Includes, in addition:
▸ Connection between ν  
   energy and shower energy
▸ Energy resolution
▸ Angular resolution

Edep: Deposited energy

cos θz,rec: Reconstructed direction

Detector effects
Each ν species 

computed separately

Note: Calculations are similar for CC and NC



Benchmark event rates
(Focused on UHE ν and IC-Gen2 Radio)
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In-Earth
attenuation

CC interactions
dominate
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Applications:
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The empirical model fits all benchmark fluxes to within 10%, i.e.,
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Reviews:
Ahlers, Helbing, De los Heros, EPJC 2018
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Ackermann, Ahlers, Anchordoqui, MB, et al., Astro2020 Decadal Survey [1903.04333]



Astrophysical neutrino sources Earth

Galactic (kpc) or extragalactic (Mpc – Gpc) distance

39



Astrophysical neutrino sources Earth

Galactic (kpc) or extragalactic (Mpc – Gpc) distance

Standard case: ν free-stream
(And oscillate) 

39



Astrophysical neutrino sources Earth

Galactic (kpc) or extragalactic (Mpc – Gpc) distance

Standard case: ν free-stream
(And oscillate) 

Non-standard case: high-energy ν scatter of CνB

39



Astrophysical neutrino sources Earth

Galactic (kpc) or extragalactic (Mpc – Gpc) distance

Standard case: ν free-stream
(And oscillate) 

Non-standard case: high-energy ν scatter of CνB

“Secret” ν 
interactions

≡
BSM ν self-
interactions

Astro

Relic

39



Astrophysical neutrino sources Earth

Galactic (kpc) or extragalactic (Mpc – Gpc) distance

Standard case: ν free-stream
(And oscillate) 

Non-standard case: high-energy ν scatter of CνB

“Secret” ν 
interactions

≡
BSM ν self-
interactions

Astro

Relic

Can change:

39



Astrophysical neutrino sources Earth

Galactic (kpc) or extragalactic (Mpc – Gpc) distance

Standard case: ν free-stream
(And oscillate) 

Non-standard case: high-energy ν scatter of CνB

“Secret” ν 
interactions

≡
BSM ν self-
interactions

Astro

Relic

Can change:
 ▸ Energy spectrum

39



Astrophysical neutrino sources Earth

Galactic (kpc) or extragalactic (Mpc – Gpc) distance

Standard case: ν free-stream
(And oscillate) 

Non-standard case: high-energy ν scatter of CνB

“Secret” ν 
interactions

≡
BSM ν self-
interactions

Astro

Relic

Can change:
 ▸ Energy spectrum
▸ Flavor composition

39



Astrophysical neutrino sources Earth

Galactic (kpc) or extragalactic (Mpc – Gpc) distance

Standard case: ν free-stream
(And oscillate) 

Non-standard case: high-energy ν scatter of CνB

“Secret” ν 
interactions

≡
BSM ν self-
interactions

Astro

Relic

Can change:
 ▸ Energy spectrum
▸ Flavor composition
▸ Direction

39



Astrophysical neutrino sources Earth
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Non-standard case: high-energy ν scatter of CνB

“Secret” ν 
interactions

≡
BSM ν self-
interactions
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Relic

Can change:
 ▸ Energy spectrum
▸ Flavor composition
▸ Direction

 ▸ Arrival times
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Secret interactions of high-energy astrophysical neutrinos
“Secret” neutrino interactions between 
astrophysical ν (PeV) and relic ν (0.1 meV):

Cross section:

Resonance energy:

MB, Rosenstroem, Shalgar, Tamborra, PRD 2020
See also: Ng & Beacom, PRD 2014
                Cherry, Friedland, Shoemaker, 1411.1071
                Blum, Hook, Murase, 1408.3799

M = 10 MeV
g = 0.03
mν = 0.1 eV

Astro

Relic
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See also: Ng & Beacom, PRD 2014
                Cherry, Friedland, Shoemaker, 1411.1071
                Blum, Hook, Murase, 1408.3799

Mediator mass

New coupling

Astro

Relic

Looking for evidence of νSI

 ▸ Look for dips in 6 years of 
    public IceCube data (HESE)

 ▸ 80 events, 18 TeV–2 PeV

 ▸ Bayesian analysis varying
    M, g, shape of emitted flux (γ)

 ▸ Assume flavor-diagonal and 
   universal: gαα = g δαα 

 ▸ Account for atmospheric ν, 
    in-Earth propagation, detector   
    uncertainties

40



See also: Shalgar, MB, Tamborra, PRD 2020 41



See also: Shalgar, MB, Tamborra, PRD 2020

Today: Constraints from 
IceCube TeV–PeV ν 
observations
MB, Rosenstrøm, Shalgar, Tamborra, PRD 2020 
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See also: Shalgar, MB, Tamborra, PRD 2020

Future: High-statistics 
TeV–PeV ν in
IceCube-Gen2 (optical)
Esteban, Pandey, Brdar, Beacom, 2107.13568

Today: Constraints from 
IceCube TeV–PeV ν 
observations
MB, Rosenstrøm, Shalgar, Tamborra, PRD 2020 
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See also: Shalgar, MB, Tamborra, PRD 2020

Future: UHE ν in
IceCube-Gen2 (radio)
MB, Másson, Valera, In preparation

Future: High-statistics 
TeV–PeV ν in
IceCube-Gen2 (optical)
Esteban, Pandey, Brdar, Beacom, 2107.13568

Today: Constraints from 
IceCube TeV–PeV ν 
observations
MB, Rosenstrøm, Shalgar, Tamborra, PRD 2020 
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Work in progress

Discovery potential for UHE ν

Inferring the spectrum of UHE ν

1

42

Measuring the UHE νN cross section

Testing ν physics using flavor ratios

Testing other UHE ν BSM models

2

3

4

5
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One likely TeV–PeV ν production scenario:
p + γ → π+ → μ+ + νμ   followed by   μ+ → e+ + νe + νμ

Full π decay chain
(1/3:2/3:0)S

Note: ν and ν are (so far) indistinguishable 
         in neutrino telescopes
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One likely TeV–PeV ν production scenario:
p + γ → π+ → μ+ + νμ   followed by   μ+ → e+ + νe + νμ

Full π decay chain
(1/3:2/3:0)S

Muon damped
(0:1:0)S

Neutron decay
(1:0:0)S

Note: ν and ν are (so far) indistinguishable 
         in neutrino telescopes

45



Song, Li, Argüelles, MB, Vincent, JCAP 2021

Allowed flavor regions overlap –
Insufficient precision in the 
mixing parameters

Measurement of flavor ratios –
Cannot distinguish between
pion-decay and muon-damped 
benchmarks even at 68% C.R. (1σ) 

Two limitations:

Theoretically palatable regions: today (2021)

46
See also: MB, Beacom, Winter, PRL 2015
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Insufficient precision in the 
mixing parameters

Measurement of flavor ratios –
Cannot distinguish between
pion-decay and muon-damped 
benchmarks even at 68% C.R. (1σ) 

Will be overcome by 2030

Two limitations:

Will be overcome by 2040

Theoretically palatable regions: today (2021)

46
See also: MB, Beacom, Winter, PRL 2015



Three reasons to be excited
Song, Li, Argüelles, MB, Vincent, JCAP 2021
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Three reasons to be excited

Oscillation physics:
We will know the mixing parameters 
better (JUNO, DUNE, Hyper-K, 
IceCube Upgrade)

Flavor measurements:
New neutrino telescopes = more  
events, better flavor measurement

Test of the oscillation framework:
We will be able to do what we want 
even if oscillations are non-unitary

Song, Li, Argüelles, MB, Vincent, JCAP 2021
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TeV–PeV theoretically palatable regions

Song, Li, Argüelles, MB, Vincent, JCAP 2021 48
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TeV–PeV theoretically palatable regions
2020

Allowed regions: overlapping 
Measurement: imprecise

Not ideal

2030

Allowed regions: well separated 
Measurement: improving

Nice

2040

Allowed regions: well separated 
Measurement: precise

Success
Song, Li, Argüelles, MB, Vincent, JCAP 2021 48
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UHE flavor sensitivity is promising:
Stjärnholm, Ericsson, Glaser, PoS (ICRC 2021) 1055

Glaser, García-Fernández, Nelles, PoS (ICRC 2021) 1231



Open questions / to-do

Event rates from transient emission of UHE ν? 
What should we expect for benchmark fluences? 

BSM studies using transient emission of UHE ν? 
Severely underdeveloped forecasts

Can we tell apart cosmogenic vs. source UHE ν diffuse fluxes?
Can we use the spectral shape?  Flavor composition?  Both seem unlikely 

Event-rate predictions for other detectors of UHE ν? 
Just need the effective volumes

52
What would you like to test?

Realistic prospects for flavor studies at UHE?
Can we measure the UHE flavor ratios?  With what precision?  What do we learn from them?



End
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Next decade: a host of planned neutrino detectors

MB et al., Snowmass 20201 Letter of interest

Increase TeV–PeV
ν statistics

Discover > EeV νSynergies with lower energies

3
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Detected event rate

Real
event rate

Contribution from all 
values of real direction & 
energy, and inelasticity 

Energy
resolution

Angular 
resolution

(Mismatch between shower and deposited energies)
Baseline:

(Mismatch between real and reconstructed directions)
Baseline: θz,rec = 2°
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Detected event rate
Sum over NC & CC, and all flavors of ν and ν:

Total number of events in energy bin                     and direction bin                          :



HorizonNo 
attenuation

Full 
attenuation

MB & Connolly, PRL 2019 12
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Effect of energy & angular resolution
Changing resolution in Edep Changing resolution in θz,rec
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Each bump    is a generalized Gaussian, e.g.,
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A generic, empirical model of the UHE ν spectrum
Neutrinos:

Anti-neutrinos:

Low-energy pγ bump
(from EBL or in source)

High-energy pγ bump
(from CMB or in source)

Power-law
(from pp 

or extrapolation)Normalization

Low-energy pγ bump
(from EBL or in source)

High-energy pγ bump
(from CMB or in source)

Bump from 
neutron decay



νSI with the UHE diffuse flux
Resonance energy:

Coupling matrix:

νSI dips and bumps in the diffuse UHE ν flux: 
► In the cosmogenic flux
► In the flux from sources

Different 
flavors can 
have different 
couplings

MB, Másson, Valera, In preparation

Work in progress, stay tuned...
51
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No significant (> 3σ) evidence for a spectral dip …  

MB, Rosenstroem, Shalgar, Tamborra, PRD 2020 
See also: Shalgar, MB, Tamborra, PRD 2020
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No significant (> 3σ) evidence for a spectral dip …  … so we set upper limits on the coupling g

(90% C.L.)

MB, Rosenstroem, Shalgar, Tamborra, PRD 2020 
See also: Shalgar, MB, Tamborra, PRD 2020
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No significant (> 3σ) evidence for a spectral dip …  … so we set upper limits on the coupling g

(90% C.L.)

The 300 TeV–1 PeV “gap” 
degrades the limit at ~10 MeV MB, Rosenstroem, Shalgar, Tamborra, PRD 2020 

See also: Shalgar, MB, Tamborra, PRD 2020



Are neutrinos forever?
▸ In the Standard Model (νSM), neutrinos are essentially stable (τ > 1036 yr):
   ▸ One-photon decay (νi → νj + γ): τ > 1036 (mi/eV)-5 yr
   ▸ Two-photon decay (νi → νj + γ + γ): τ > 1057 (mi/eV)-9 yr
   ▸ Three-neutrino decay (νi → νj + νk + νk): τ > 1055 (mi/eV)-5 yr

▸ BSM decays may have significantly higher rates: νi → νj + φ

▸ φ: Nambu-Goldstone boson of a broken symmetry (e.g.,  Majoron)

▸ We work in a model-independent way:
   the nature of φ is unimportant if it is invisible to neutrino detectors 

» Age of Universe
   (~ 14.5 Gyr)
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Flavor content of neutrino mass eigenstates

|Uαi|2 =|Uαi(θ12, θ23, θ13, δCP
)|2

MB, Beacom, Winter PRL 2015

Known to within 8%

Known to within 2%

Known to within 20%
(or worse)

36



Neutrinos propagate as an incoherent mix of ν1, ν2, ν3 —

w1

w2

w3

 +

 +

Varying all possible 
combinations of weights wi 

and
mixing parameters

Complete decay selects particular weights ▸
with striking consequences for flavor   



Measuring the neutrino lifetime
ν

2
, ν

3
 → ν

1

ν
1 
lightest and stable

(normal mass ordering)

(inverted mass ordering)

ν
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2
 → ν

3

ν3 
lightest and stable

Sources

Earth

If all unstable 
neutrinos decay

fα,⊕ = |Uα1|2

fα,⊕ = |Uα3|2

Decay rate depends on exp[- t / (γ τi)] = exp[- (L/E) · (mi/τi)]

(w1 ~ 1; w2, w3 ~ 0)

(w3 ~ 1; w1, w2 ~ 0)
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MB, Beacom, Murase, PRD 2017
Baerwald, MB, Winter, JCAP 2012
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Pure ν1 disfavored 
at > 2σMB, Beacom, Murase, PRD 2017

Baerwald, MB, Winter, JCAP 2012
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Using the Glashow resonance to test decay

MB, 2004.06844
See also: MB, Beacom, Murase, PRD 2017

▸ At 6.3 PeV, the Glashow resonance 
  (νe + e → W) should trigger showers in IceCube

▸ … unless ν1, ν2 decay to ν3 en route to Earth
   (the surviving ν3 have little electron content)

▸ IceCube has seen 1 shower in the 4–8 PeV 
   range, so ν1, ν2 must make it to Earth

▸ So we set lower limits on their lifetimes
   (in the inverted mass ordering)

▸ Translated into upper limits on coupling
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▸ … unless ν1, ν2 decay to ν3 en route to Earth
   (the surviving ν3 have little electron content)

▸ IceCube has seen 1 shower in the 4–8 PeV 
   range, so ν1, ν2 must make it to Earth

▸ So we set lower limits on their lifetimes
   (in the inverted mass ordering)

▸ Translated into upper limits on coupling

τ1/m1 > 2.91 × 10-3 s eV-1 (90% C.L.)
τ2/m2 > 1.26 × 10-3 s eV-1 (90% C.L.)
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Astrophysical sources Earth

Oscillations change the number

Up to a few Gpc

of ν of each flavor, Ne, Nμ, Nτ

Different production mechanisms yield different flavor ratios:
( fe,S, fμ,S, fτ,S ) ≡ (Ne,S, Nμ,S, Nτ,S )/Ntot 

Flavor ratios at Earth (α = e, μ, τ):

νμ
ντ νeνeνμ

E.g., E.g.,
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Oscillations change the number

Up to a few Gpc

of ν of each flavor, Ne, Nμ, Nτ

Different production mechanisms yield different flavor ratios:
( fe,S, fμ,S, fτ,S ) ≡ (Ne,S, Nμ,S, Nτ,S )/Ntot 

Flavor ratios at Earth (α = e, μ, τ): Standard oscillations
or

new physics

νμ
ντ νeνeνμ

E.g., E.g.,



Sources Earth

Oscillations

νμ
ντ νeνeνμ

E.g., E.g.,

From sources to Earth: we learn what to expect when measuring 

From Earth to sources: we let the data teach us about 



Sources Earth

Oscillations

νμ
ντ νeνeνμ

E.g.,

From sources to Earth: we learn what to expect when measuring 

?



Measuring flavor composition: 2015–2040
Song, Li, Argüelles, MB, Vincent, JCAP 2021
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Song, Li, Argüelles, MB, Vincent, JCAP 2021

~16× increase by 2030!
(in the TeV–PeV range)
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Measuring flavor composition: 2015–2040
Song, Li, Argüelles, MB, Vincent, JCAP 2021

Based on 
real data

Projections
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Song, Li, Argüelles, MB, Vincent, JCAP 2021

Allowed flavor regions overlap –
Insufficient precision in the 
mixing parameters

Measurement of flavor ratios –
Cannot distinguish between
pion-decay and muon-damped 
benchmarks even at 68% C.R. (1σ) 

Will be overcome by 2030

Two limitations:

Will be overcome by 2040

Theoretically palatable regions: today (2021)

52



How knowing the mixing parameters better helps

We can compute the oscillation 
probability more precisely: 

So we can convert back and 
forth between source and Earth 
more precisely

53



How knowing the mixing parameters better helps

Measure θ12 better

Measure θ23 better

(δCP less important)

(θ13 effect is tiny)
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How knowing the mixing parameters better helps

Measure θ12 better

Measure θ23 better2020 ~2030

In our results:
JUNO + Hyper-K + DUNE

Marginal improvement til 2040

NuFit 5.0

+ Hyper-K

+ JUNO

+ Hyper-K
+ JUNO
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How knowing the mixing parameters better helps

14

For a future experiment 
ε = JUNO, DUNE, Hyper-K:

We combine experiments in 
a likelihood:

Best fit from NuFit 5.0

From our simulations



Inferring the flavor composition at the sources

Song, Li, Argüelles, MB, Vincent, 2012.12893
MB & Ahlers, PRL 2019

Ingredient #1: 
Flavor ratios measured at Earth,

 

Ingredient #2: 
Probability density of mixing 

parameters (θ12, θ23, θ13, δCP)

E.g.,
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Note: 
All plots shown are for normal 
neutrino mass ordering (NO); 
inverted ordering looks similar

26

Theoretically palatable regions: today (2020)

Song, Li, Argüelles, MB, Vincent, 2012.12893
See also: MB, Beacom, Winter, PRL 2015
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ratios at the source
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Flavor at the Earth: theoretically palatable regions
Theoretically palatable flavor regions

≡
Allowed regions of flavor ratios at Earth derived from oscillations

MB, Beacom, Winter, PRL 2015

Note: 
The original palatable regions were 
frequentist [MB, Beacom, Winter, PRL 2015]; 
the new ones are Bayesian
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Ingredient #1: 
Flavor ratios at the source,

( fe,S, fμ,S, fτ,S ) 

Fix at one of the benchmarks
(pion decay, muon-damped, neutron decay)
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Explore all possible combinations
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Allowed regions of flavor ratios at Earth derived from oscillations
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Ingredient #2: 
Probability density of mixing 

parameters (θ12, θ23, θ13, δCP)

Ingredient #1: 
Flavor ratios at the source,

( fe,S, fμ,S, fτ,S ) 

Fix at one of the benchmarks
(pion decay, muon-damped, neutron decay)

or

Explore all possible combinations

2020: Use χ2 profiles from 
the NuFit 5.0 global fit
(solar + atmospheric

+ reactor + accelerator)
Esteban et al., JHEP 2020

www.nu-fit.org

Note: 
The original palatable regions were 
frequentist [MB, Beacom, Winter, PRL 2015]; 
the new ones are Bayesian
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Theoretically palatable flavor regions

≡
Allowed regions of flavor ratios at Earth derived from oscillations

MB, Beacom, Winter, PRL 2015

Ingredient #2: 
Probability density of mixing 

parameters (θ12, θ23, θ13, δCP)

Ingredient #1: 
Flavor ratios at the source,

( fe,S, fμ,S, fτ,S ) 

Fix at one of the benchmarks
(pion decay, muon-damped, neutron decay)

or

Explore all possible combinations

2020: Use χ2 profiles from 
the NuFit 5.0 global fit
(solar + atmospheric

+ reactor + accelerator)
Esteban et al., JHEP 2020

www.nu-fit.org

Post-2020: Build our own 
profiles using simulations 
of JUNO, DUNE, Hyper-K

An et al., J. Phys. G 2016
DUNE, 2002.03005

Huber, Lindner, Winter, Nucl. Phys. B 2002

Note: 
The original palatable regions were 
frequentist [MB, Beacom, Winter, PRL 2015]; 
the new ones are Bayesian
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Varying over all 
possible flavor 
ratios at the source
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How knowing the mixing parameters better helps

We can compute the oscillation 
probability more precisely: 

So we can convert back and 
forth between source and Earth 
more precisely
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How knowing the mixing parameters better helps
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For a future experiment 
ε = JUNO, DUNE, Hyper-K:

We combine experiments in 
a likelihood:

Best fit from NuFit 5.0

From our simulations



How knowing the mixing parameters better helps

Measure θ12 better

Measure θ23 better

(δCP less important)

(θ13 effect is tiny)
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How knowing the mixing parameters better helps

Measure θ12 better

Measure θ23 better2020 ~2030

In our results:
JUNO + Hyper-K + DUNE

Marginal improvement til 2040

NuFit 5.0

+ Hyper-K

+ JUNO

+ Hyper-K
+ JUNO

Song, Li, MB, Argüelles, Vincent, 2012.XXXXX 21



Theoretically palatable regions: 2020 → 2030 → 2040

Song, Li, MB, Argüelles, Vincent, 2012.XXXXX 22
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2020

Allowed regions: overlapping 
Measurement: imprecise
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Theoretically palatable regions: 2020 → 2030 → 2040

Song, Li, MB, Argüelles, Vincent, 2012.XXXXX

2020

Allowed regions: overlapping 
Measurement: imprecise

Not ideal

2030

Allowed regions: well separated 
Measurement: improving

Nice

2040

Allowed regions: well separated 
Measurement: precise

Success

22



Song, Li, MB, Argüelles, Vincent, 2012.XXXXX

Theory –
Mixing parameters known 
precisely: allowed flavor regions 
are almost points (already by 2030)

Measurement of flavor ratios –
Can distinguish between similar 
predictions at 99.7% C.R. (3σ) 

Can finally use the full power of 
flavor composition for astrophysics 
and neutrino physics

By 2040:

Theoretically palatable regions: 2020 vs. 2040

24



Song, Li, Argüelles, MB, Vincent, JCAP 2021

vs.

16

No unitarity?  No problem



Energy dependence of the flavor composition?
Different neutrino production channels accessible at different energies – 

MB, Beacom, Winter, PRL 2015

▸ TP13: pγ model, target photons from e-e+ annihilation [Hümmer+, Astropart. Phys. 2010]

▸ Will be difficult to resolve [Kashti, Waxman, PRL 2005; Lipari, Lusignoli, Meloni, PRD 2007]
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Energy dependence of flavor ratios – in IceCube-Gen2

IceCube-Gen2, 2008.04323

Pion decay

Muon-damped

Measured:
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More than one production mechanism?

Song, Li, Argüelles, MB, Vincent, 2012.12893

Can we detect the contribution of
multiple ν production mechanisms?

π decay:
(1/3, 2/3, 0)

μ damped:
(0, 1, 0)

n decay:
(1, 0, 0)

Propagate to Earth

Assume real value kπ = 1 (kμ = kn = 0)

By 2040, how well will we recover the real value?
[Adding spectrum information (not shown) will likely help]
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multiple ν production mechanisms?

π decay:
(1/3, 2/3, 0)

μ damped:
(0, 1, 0)

n decay:
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Propagate to Earth

Assume real value kπ = 1 (kμ = kn = 0)

By 2040, how well will we recover the real value?

We do recover the real value

k
π  and k

μ  anti-correlated

< 40% n-decay 
contribution

[Adding spectrum information (not shown) will likely help]
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