Grounded tests of neutrino physics with high- and ultra-high energy cosmic neutrinos

Mauricio Bustamante

Niels Bohr Institute, University of Copenhagen

Paris-Saclay Astroparticle Symposium October 26, 2021

<u>Grounded</u> tests of neutrino physics with high- and ultra-high energy cosmic neutrinos

Mauricio Bustamante

Niels Bohr Institute, University of Copenhagen

Paris-Saclay Astroparticle Symposium October 26, 2021

& astrophysics Grounded tests of neutrino physics with high- and ultra-high energy cosmic neutrinos

Mauricio Bustamante

Niels Bohr Institute, University of Copenhagen

Paris-Saclay Astroparticle Symposium October 26, 2021

VPLATE (vplate.ru)

VPLATE (vplate.ru)

VPLATE (vplate.ru)

How it started

How it's going

PeV v

discovered

First predictions of high-energy

cosmic v

Hints of sources First tests of v physics EeV v discovered Precision tests with PeV v First tests with EeV v

Today TeV–PeV v

<u>Key developments</u>: Bigger detectors → larger statistics Better reconstruction Smaller astrophysical uncertainties

Today TeV–PeV v

<u>Key developments</u>: Bigger detectors → larger statistics Better reconstruction Smaller astrophysical uncertainties

<u>Key developments</u>: Bigger detectors → larger statistics Better reconstruction Smaller astrophysical uncertainties

Next decade > 100-PeV v

<u>Key developments</u>: Bigger detectors → larger statistics Better reconstruction Smaller astrophysical uncertainties Next decade > 100-PeV v

Make predictions for a new energy regime

<u>Key developments</u>: Bigger detectors → larger statistics Better reconstruction Smaller astrophysical uncertainties Next decade > 100-PeV v

Make predictions for a new energy regime

<u>Key developments</u>: Discovery New detection techniques Better UHE v flux predictions

<u>Key developments</u>: Bigger detectors → larger statistics Better reconstruction Smaller astrophysical uncertainties Next decade > 100-PeV v

Make predictions for a new energy regime

<u>Key developments</u>: Discovery New detection techniques Better UHE v flux predictions

Made robust and meaningful by accounting for all relevant particle and astrophysics uncertainties

<u>Key developments</u>: Bigger detectors → larger statistics Better reconstruction Smaller astrophysical uncertainties Next decade > 100-PeV v

Make predictions for a new energy regime

<u>Key developments</u>: Discovery New detection techniques Better UHE v flux predictions

Similar to the evolution of cosmology to a high-precision field in the 1990s

Made robust and meaningful by accounting for all relevant particle and astrophysics uncertainties A general framework (Focused on UHE v and IC-Gen2 Radio)

UHE v from *pp* and *pγ* interactions, account for cosmic-ray spectrum & mass composition, source properties

scattering, v_{τ} regeneration

scattering, v_{τ} regeneration

scattering, v_{τ} regeneration

Flavor structure of the UHE ν fluxes

source properties

scattering, v_{τ} regeneration

Propagation inside the Earth

Bertone, Gauld, Rojo, JHEP 2019

Bertone, Gauld, Rojo, JHEP 2019

Bertone, Gauld, Rojo, JHEP 2019

Use NuPropEarth for in-Earth propagation

[github.com/pochoarus/NuPropEarth]

Interactions:

▶ BGR18 vN deep inelastic scattering (DIS) on partons (dominant)

Sub-dominant:

by ~10%

increase attenuation

- DIS on photon field of nucleons
- ► Coherent vA scattering
- ► Elastic & diffractive vN scattering
- ▶ v scattering on atomic electrons

Includes v_{τ} regeneration:

- **TAUSIC:** Energy losses of intermediate τ
- **TAUOLA:** Distribution of τ decay products

Matter inside Earth:

- Density: Preliminary Reference Earth Model
- ► Top layer of ice
- Varying element composition (non-isoscalar)

We propagate $v_e, \overline{v}_e, v_u, \overline{v}_u, v_\tau, \overline{v}_\tau$ separately

 $N_{f,\nu_{\alpha}}^{\text{mono}}$

coefficient

Use NuPropEarth for in-Earth propagation

[github.com/pochoarus/NuPropEarth]

Interactions:

▶ BGR18 vN deep inelastic scattering (DIS) on partons (dominant)

Sub-dominant:

by ~10%

increase attenuation

Save look-up

tables of propagated

v spectra

- DIS on photon field of nucleons
- Coherent vA scattering
- ► Elastic & diffractive vN scattering
- v scattering on atomic electrons

Includes v_{τ} regeneration:

TAUSIC: Energy losses of intermediate τ
TAUOLA: Distribution of τ decay products

Matter inside Earth:

- Density: Preliminary Reference Earth Model
- ► Top layer of ice
- Varying element composition (non-isoscalar)

We propagate $v_e, \bar{v}_e, v_\mu, \bar{v}_\mu, v_\tau, \bar{v}_\tau$ separately

Use NuPropEarth for in-Earth propagation

[github.com/pochoarus/NuPropEarth]

Interactions:

- ▶ BGR18 vN deep inelastic scattering (DIS) on partons
- DIS on photon field of nucleons
- Coherent vA scattering
- ► Elastic & diffractive vN scattering
- v scattering on atomic electrons

Includes v_{τ} regeneration:

- ► TAUSIC: Energy losses of intermediate τ
- **►** TAUOLA: Distribution of τ decay products

Matter inside Earth:

- Density: Preliminary Reference Earth Model
- ► Top layer of ice
- Varying element composition (non-isoscalar)

We propagate $v_e, \bar{v}_e, v_\mu, \bar{v}_\mu, v_\tau, \bar{v}_\tau$ separately

Detector geometry

Underground cylinder

Area of lid: 500 km²

Height: 1.5 km

Detector geometry now available in NuPropEarth [github.com/pochoarus/NuPropEarth]

Work led by Víctor Valera

scattering, v_{τ} regeneration

IC-Gen2 has stations containing:Shallow antennas

Deep antennas

IC-Gen2 has stations containing:Shallow antennasDeep antennas

We simulate the effective volume of with NuRadioMC & NuRadioReco

Deep antennas

We simulate the effective volume of with NuRadioMC & NuRadioReco

IC-Gen2 has stations containing:Shallow antennasDeep antennas

We simulate the effective volume of with NuRadioMC & NuRadioReco

Note: For now, we turned off the contribution of secondary leptons

For v_e CC: Use the CC V_{eff} For v_{μ} CC, v_{τ} CC, v_l NC: Use the NC V_{eff}

IC-Gen2 has stations containing:Shallow antennasDeep antennas

We simulate the effective volume of with NuRadioMC & NuRadioReco

Note: For now, we turned off the contribution of secondary leptons

For v_e CC: Use the CC V_{eff} For v_{μ} CC, v_{τ} CC, v_l NC: Use the NC V_{eff}

Total volume = 169 shallow-only stations + 144 hybrid (shallow+deep) stations

scattering, v_{τ} regeneration

Real event rate

 $\frac{d^3 N_{\nu_{\alpha}}^{\rm CC}}{dE_{\nu} dy d\cos\theta_z}$

 E_{v} : Neutrino energy y: Inelasticity $\cos \theta_{z}$: Neutrino direction

Includes:

- ► Flux
- In-Earth propagation
- Effective volume
- Inelasticity distribution

Detector effects

Each v species computed separately

Real event rate

 $\frac{d^3 N_{\nu_{\alpha}}^{\rm CC}}{dE_{\nu} dy d\cos\theta_z}$

 E_v : Neutrino energy y: Inelasticity $\cos \theta_z$: Neutrino direction

Includes:

- ► Flux
- In-Earth propagation
- Effective volume
- Inelasticity distribution

Note: Calculations are similar for CC and NC

Detected event rate

Real event rate

 E_v : Neutrino energy y: Inelasticity $\cos \theta_z$: Neutrino direction

Includes:

► Flux

- In-Earth propagation
- Effective volume
- Inelasticity distribution

Detector effects Each v species computed separately

 E_{dep} : Deposited energy

 $\cos \theta_{z, rec}$: Reconstructed direction

Includes, in addition:

- Connection between v energy and shower energy
- Energy resolution
- Angular resolution

Benchmark event rates (Focused on UHE v and IC-Gen2 Radio)

MB, Valera, Glaser, In preparation

MB, Valera, Glaser, In preparation

MB, Valera, Glaser, In preparation

Applications: Physics and astrophysics

Discovery potential for UHE $\boldsymbol{\nu}$

Inferring the spectrum of UHE v

Testing other UHE v BSM models

Discovery potential for UHE $\boldsymbol{\nu}$

3 Measuring the UHE vN cross section

Testing other UHE v BSM models

Work in progress, stay tuned ...

Discovery potential for UHE $\boldsymbol{\nu}$

2 Inferring the spectrum of UHE v

Testing other UHE v BSM models

Neutrinos:

 $E_{\nu}^2 \Phi_{\nu_{\alpha}}(E_{\nu}) =$

Neutrinos:

 $E_{\nu}^2 \Phi_{\nu_{\alpha}}(E_{\nu}) = (E_{\nu}^2 \Phi_0) f_{\alpha, \oplus} f_{\nu}$

Neutrinos:

Normalization

$$E_{\nu}^{2}\Phi_{\nu_{\alpha}}(E_{\nu}) = (E_{\nu}^{2}\Phi_{0})f_{\alpha,\oplus}f_{\nu} \left[$$

Anti-neutrinos:

 $E_{\nu}^2 \Phi_{\bar{\nu}_{\alpha}}(E_{\nu}) =$

Anti-neutrinos:

 $E_{\nu}^{2}\Phi_{\bar{\nu}_{\alpha}}(E_{\nu}) = (E_{\nu}^{2}\Phi_{0})f_{\alpha,\oplus}(1-f_{\nu})$

Anti-neutrinos:

 $E_{\nu}^{2}\Phi_{\bar{\nu}_{\alpha}}(E_{\nu}) = (E_{\nu}^{2}\Phi_{0})f_{\alpha,\oplus}(1-f_{\nu})$

$$E_{\nu}^{2}\Phi_{\bar{\nu}_{\alpha}}(E_{\nu}) = (E_{\nu}^{2}\Phi_{0})f_{\alpha,\oplus}(1-f_{\nu})\left[\left(\frac{E_{\nu}}{\text{PeV}}\right)^{-\gamma}\right]$$

Anti-neutrinos:

$$E_{\nu}^2 \Phi_{\bar{\nu}_{\alpha}}(E_{\nu}) = (E_{\nu}^2 \Phi_0) f_{\alpha,\oplus}(1 - f_{\nu}) \left[\left(\frac{E_{\nu}}{\text{PeV}} \right)^{-\gamma} \right]$$

 $\eta_l^{\bar{\nu}} \mathcal{G}_l(E_{\nu}; \alpha_l, \beta_l^{\bar{\nu}}, \mu_l)$ Low-energy $p\gamma$ bump (from EBL or in source)

Anti-neutrinos:

$$E_{\nu}^2 \Phi_{\bar{\nu}_{\alpha}}(E_{\nu}) = (E_{\nu}^2 \Phi_0) f_{\alpha,\oplus}(1 - f_{\nu}) \left[\left(\frac{E_{\nu}}{\text{PeV}} \right)^{-\gamma} \right]$$

 $\eta_l^{\bar{\nu}} \mathcal{G}_l(E_{\nu}; \alpha_l, \beta_l^{\bar{\nu}}, \mu_l) + \eta_h^{\bar{\nu}} \mathcal{G}_h(E_{\nu}; \alpha_h, \beta_h^{\bar{\nu}}, \mu_h)$ Low-energy $p\gamma$ bump
(from EBL or in source) (from CMB or in source)

$$E_{\nu}^{2}\Phi_{\bar{\nu}\alpha}(E_{\nu}) = (E_{\nu}^{2}\Phi_{0})f_{\alpha,\oplus}(1-f_{\nu}) \left[\left(\frac{E_{\nu}}{\text{PeV}} \right)^{-\gamma} + \eta_{n}^{\bar{\nu}}\mathcal{G}_{n}(E_{\nu};\alpha_{n}^{\bar{\nu}},\beta_{n}^{\bar{\nu}},\mu_{n}^{\bar{\nu}}) + \eta_{l}^{\bar{\nu}}\mathcal{G}_{l}(E_{\nu};\alpha_{l},\beta_{l}^{\bar{\nu}},\mu_{l}) + \eta_{h}^{\bar{\nu}}\mathcal{G}_{h}(E_{\nu};\alpha_{h},\beta_{h}^{\bar{\nu}},\mu_{h}) \right]$$
Bump from neutron decay
$$Iow-energy p\gamma bump \text{ (from EBL or in source)} (from CMB or in source)$$

The empirical model fits all benchmark fluxes to within 10%, *i.e.*,

Work in progress, stay tuned ...

Discovery potential for UHE $\boldsymbol{\nu}$

Testing other UHE v BSM models

Discovery potential for UHE $\boldsymbol{\nu}$

Inferring the spectrum of UHE v

3 Measuring the UHE vN cross section

Testing other UHE v BSM models

1

Discovery potential for UHE $\boldsymbol{\nu}$

2 Inferring the spectrum of UHE v

3 Measuring the UHE vN cross section

Testing other UHE v BSM models

v self-interactions

v self-interactions

TXS 0506+056

IceCube HESE

6 years (this work)

0

_

 $^{-2}$

-3

-4

-5

Mediator coupling $\log_{10}(g_{\alpha\alpha})$

.

Lab gee

 $\phi\beta\beta(\alpha = e)$

MB, Rosenstrøm, Shalgar, Tamborra, PRD 2020

BBN ($\Delta N_{\rm eff} = 1$)

-6 -6

-5 -4 -3 -2 -1 0 1 2 3 4 5Mediator mass $\log_{10}(M/MeV)$

v scattering on Galactic DM

Argüelles, Kheirandish, Vincent, PRL 2017

v decay

v self-interactions

Lab gee

 $\phi\beta\beta(\alpha = e)$

MB, Rosenstrøm, Shalgar, Tamborra, PRD 2020

BBN ($\Delta N_{\rm eff} = 1$)

-5 -4 -3 -2 -1 0 1 2 3 4 5Mediator mass $\log_{10}(M/MeV)$

TXS 0506+056

IceCube HESE

6 years (this work)

coupling $\log_{10}(g_{aa})$

Mediator (

_2

-3

-5

v scattering on Galactic DM

Argüelles, Kheirandish, Vincent, PRL 2017

v decay

Dark matter decay

TeV–EeV v cross sections

v self-interactions

Lab gee

 $\phi\beta\beta(\alpha = e)$

MB, Rosenstrøm, Shalgar, Tamborra, PRD 2020

TXS 0506+056

IceCube HESE

6 years (this work)

coupling $\log_{10}(g_{u\alpha})$

Mediator

_2

-3

-5

v scattering on Galactic DM

Argüelles, Kheirandish, Vincent, PRL 2017

v decay

v-electron interaction

-5 -4 -3 -2 -1 0 1 2 3 4 5Mediator mass $\log_{10}(M/MeV)$

TeV–EeV v cross sections

v self-interactions

 $\phi\beta\beta(\alpha = e)$

MB, Rosenstrøm, Shalgar, Tamborra, PRD 2020

-5 -4 -3 -2 -1 0 1 2 3 4 5Mediator mass $\log_{10}(M/MeV)$

v-electron interaction

TXS 0506+056

IceCube HESE

6 years (this work)

coupling $\log_{10}(g_{aa})$

Mediator

-3

_ 5

-61

v scattering on Galactic DM

Lorentz-invariance violation

Argüelles, Kheirandish, Vincent, PRL 2017

v decay

Dark matter decay

TeV–EeV v cross sections

v self-interactions

v decay

v₂

Earth

Galactic (kpc) or extragalactic (Mpc – Gpc) distance

Earth

Galactic (kpc) or extragalactic (Mpc – Gpc) distance

Standard case: v free-stream

(And oscillate)

MB, Rosenstroem, Shalgar, Tamborra, *PRD* 2020 See also: Ng & Beacom, *PRD* 2014 Cherry, Friedland, Shoemaker, 1411.1071 Blum, Hook, Murase, 1408.3799

See also: Ng & Beacom, *PRD* 2014 Cherry, Friedland, Shoemaker, 1411.1071 Blum, Hook, Murase, 1408.3799

See also: Ng & Beacom, *PRD* 2014 Cherry, Friedland, Shoemaker, 1411.1071 Blum, Hook, Murase, 1408.3799

MB, Rosenstroem, Shalgar, Tamborra, PRD 2020 See also: Ng & Beacom, PRD 2014 Cherry, Friedland, Shoemaker, 1411.1071 Blum, Hook, Murase, 1408.3799

"Secret" neutrino interactions between astrophysical v (PeV) and relic v (0.1 meV):

MB, Rosenstroem, Shalgar, Tamborra, *PRD* 2020 See also: Ng & Beacom, *PRD* 2014 Cherry, Friedland, Shoemaker, 1411.1071 Blum, Hook, Murase, 1408.3799

Looking for evidence of vSI

- Look for dips in 6 years of public IceCube data (HESE)
- ▶ 80 events, 18 TeV-2 PeV
- Assume flavor-diagonal and universal: $g_{\alpha\alpha} = g \, \delta_{\alpha\alpha}$
- Bayesian analysis varying
 M, *g*, shape of emitted flux (γ)
- Account for atmospheric v, in-Earth propagation, detector uncertainties

Today: Constraints from IceCube TeV–PeV v observations

MB, Rosenstrøm, Shalgar, Tamborra, PRD 2020

Work in progress

1

Discovery potential for UHE $\boldsymbol{\nu}$

2 Inferring the spectrum of UHE v

3 Measuring the UHE vN cross section

Testing other UHE v BSM models

5 Testing v physics using flavor ratios

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

From Earth to sources: we let the data teach us about $f_{\alpha,S}$

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

One likely TeV–PeV v production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_{\mu}}$

Full π decay chain (1/3:2/3:0)_s

Note: v and \overline{v} are (so far) indistinguishable in neutrino telescopes

One likely TeV–PeV v production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_{\mu}}$ 0.0 S O -1.0 π decay Full π decay chain 0.1-0.9 $(1/3:2/3:0)_{S}$ 0.2 - 0.8 0.3 -0.7 Fraction of Vr Fraction of NH 0.4 - 0.6 0.5 - 0.5 0.6 -0.30.8 -0.2 0.9 -0.1 1.0 -0.0 *Note:* v and \overline{v} are (so far) indistinguishable 0.0 0.2 0.6 0.7 0.8 0.9 1.0 0.1 0.3 0.40.5 in neutrino telescopes Fraction of v_e

One likely TeV–PeV v production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_{\mu}}$ 0.0 $S \oplus$ -1.0 $\bigcirc \bullet \pi$ decay Full π decay chain 0.1 -0.9 $(1/3:2/3:0)_{S}$ 0.2 - 0.8 0.3 0.7 Fraction of Vr Fraction of VH 0.4 -0.6 0.5 0.5 0.6 -0.3 0.8 -0.2 0.9 -0.11.0 -0.0 *Note:* v and \overline{v} are (so far) indistinguishable 0.8 0.0 0.1 0.2 0.3 0.40.5 0.6 0.7 0.9 1.0 in neutrino telescopes Fraction of v_e

Theoretically palatable regions: today (2021)

Two limitations:

Allowed flavor regions overlap – Insufficient precision in the mixing parameters

Measurement of flavor ratios – Cannot distinguish between pion-decay and muon-damped benchmarks even at 68% C.R. (1σ)

Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2021 See also: **MB**, Beacom, Winter, *PRL* 2015

Theoretically palatable regions: today (2021)

Two limitations:

Allowed flavor regions overlap – Insufficient precision in the mixing parameters Will be overcome by 2030

Measurement of flavor ratios – Cannot distinguish between pion-decay and muon-damped benchmarks even at 68% C.R. (1σ)

Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2021 See also: **MB**, Beacom, Winter, *PRL* 2015

Theoretically palatable regions: today (2021)

Two limitations:

Allowed flavor regions overlap – Insufficient precision in the mixing parameters Will be overcome by 2030

Measurement of flavor ratios – Cannot distinguish between pion-decay and muon-damped benchmarks even at 68% C.R. (1σ) Will be overcome by 2040

Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2021 See also: **MB**, Beacom, Winter, *PRL* 2015

Three reasons to be excited

Three reasons to be excited

Flavor measurements:

New neutrino telescopes = more events, better flavor measurement

Three reasons to be excited

Flavor measurements:

New neutrino telescopes = more events, better flavor measurement

Oscillation physics:

We will know the mixing parameters better (JUNO, DUNE, Hyper-K, IceCube Upgrade)
Three reasons to be excited

Flavor measurements:

New neutrino telescopes = more events, better flavor measurement

Oscillation physics:

We will know the mixing parameters better (JUNO, DUNE, Hyper-K, IceCube Upgrade)

Test of the oscillation framework: We will be able to do what we want even if oscillations are non-unitary

2020

Allowed regions: overlapping Measurement: imprecise

2020

Allowed regions: overlapping Measurement: imprecise

Not ideal

2020

2030

Allowed regions: overlapping Measurement: imprecise

Not ideal

Allowed regions: well separated Measurement: improving

NO, upper θ_{23} octant,

68% C.R.

JUNO + HK

2020

2030

-1.0

• π decay: $(1:2:0)_{S}$

 μ -damped: $(0:1:0)_{S}$

0.0

0.1

Allowed regions: overlapping Measurement: imprecise

Not ideal

95% C.R. 0.2 \land *n* decay: $(1:0:0)_{c}$ 99.7% C.R. 0.8 0.3 Fraction of VH JH.® Fraction of U.S. S. 0.40.8 0.2 0.9 -0.11.0 -0.0 0.5 0.7 0.9 0.10.2 0.3 0.6 0.8 1.0 0.0 0.4 Fraction of ν_e , $f_{e,\oplus}$

Allowed regions: well separated Measurement: improving

Nice

2020

Allowed regions: overlapping Measurement: imprecise

Not ideal

2030

Allowed regions: well separated Measurement: improving

Nice

2040

Allowed regions: well separated Measurement: precise

2020

Allowed regions: overlapping Measurement: imprecise

Not ideal

2030

Allowed regions: well separated Measurement: improving

Nice

Allowed regions: well separated Measurement: precise

Success

From Earth to sources: we let the data teach us about $f_{\alpha,S}$

Repurpose the flavor sensitivity to test new physics:

Repurpose the flavor sensitivity to test new physics:

Repurpose the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Repurpose the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Repurpose the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Lorentz- and CPT-invariance violation

[Barenboim & Quigg, *PRD* 2003; **MB**, Gago, Peña-Garay, *JHEP* 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, *PRL* 2015]

Repurpose the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Lorentz- and CPT-invariance violation

[Barenboim & Quigg, *PRD* 2003; **MB**, Gago, Peña-Garay, *JHEP* 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, *PRL* 2015]

Non-standard interactions

[González-García *et al., Astropart. Phys.* 2016; Rasmussen *et al., PRD* 2017]

Repurpose the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, JCAP 2014; Ahlers, **MB**, Mu, PRD 2018; Ahlers, **MB**, Nortvig, JCAP 2021]

Lorentz- and CPT-invariance violation

[Barenboim & Quigg, *PRD* 2003; **MB**, Gago, Peña-Garay, *JHEP* 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, *PRL* 2015]

Non-standard interactions

[González-García *et al., Astropart. Phys.* 2016; Rasmussen *et al., PRD* 2017]

Active-sterile v mixing

[Aeikens *et al., JCAP* 2015; Brdar, Kopp, Wang, *JCAP* 2017; Argüelles *et al., JCAP* 2020; Ahlers, **MB**, *JCAP* 2021]

Repurpose the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Lorentz- and CPT-invariance violation

[Barenboim & Quigg, *PRD* 2003; **MB**, Gago, Peña-Garay, *JHEP* 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, *PRL* 2015]

Non-standard interactions

[González-García *et al., Astropart. Phys.* 2016; Rasmussen *et al., PRD* 2017]

Active-sterile v mixing

[Aeikens *et al.*, *JCAP* 2015; Brdar, Kopp, Wang, *JCAP* 2017; Argüelles *et al.*, *JCAP* 2020; Ahlers, **MB**, *JCAP* 2021]

Long-range ev interactions [MB & Agarwalla, PRL 2019]

```
Reviews:
Mehta & Winter, JCAP 2011; Rasmussen et al., PRD 2017
```


Repurpose the flavor sensitivity to test new physics:

Open questions / to-do

Event-rate predictions for other detectors of UHE v? Just need the effective volumes

Event rates from transient emission of UHE v? What should we expect for benchmark fluences?

BSM studies using transient emission of UHE v? Severely underdeveloped forecasts

Can we tell apart cosmogenic vs. source UHE v diffuse fluxes? Can we use the spectral shape? Flavor composition? Both seem unlikely

Realistic prospects for flavor studies at UHE?

Can we measure the UHE flavor ratios? With what precision? What do we learn from them?

What would you like to test?

Backup slides

Next decade: a host of planned neutrino detectors

Real event rate

$$\frac{d^3 N_{\nu_{\alpha}}^{\rm CC}}{dE_{\nu} dy d\cos\theta_z} = 2\pi T N_{\rm Av} \frac{\rho_{\rm ice}}{M_{\rm ice}} V_{\rm eff,\nu_{\alpha}}^{\rm CC} (E_{\nu},\cos\theta_z) \frac{d\sigma_{\nu N}^{\rm CC}(E_{\nu},y)}{dy} \Phi_{\nu_{\alpha}}^{\rm det} (E_{\nu},\cos\theta_z)$$

Real event rate

Number of target nucleons

$$\frac{d^3 N_{\nu_{\alpha}}^{\rm CC}}{dE_{\nu} dy d\cos\theta_z} = 2\pi T N_{\rm Av} \frac{\rho_{\rm ice}}{M_{\rm ice}} V_{\rm eff,\nu_{\alpha}}^{\rm CC} (E_{\nu},\cos\theta_z) \frac{d\sigma_{\nu N}^{\rm CC}(E_{\nu},y)}{dy} \Phi_{\nu_{\alpha}}^{\rm det}(E_{\nu},\cos\theta_z)$$

$$\begin{aligned} & \text{Real event rate} \\ & \underset{\text{nucleons}}{\text{Misc}}^{\text{darget}} \text{Effective volume} \\ & \frac{d^3 N_{\nu_{\alpha}}^{\text{CC}}}{dE_{\nu} dy d\cos \theta_z} = 2\pi T N_{\text{Av}} \frac{\rho_{\text{ice}}}{M_{\text{ice}}} V_{\text{eff},\nu_{\alpha}}^{\text{CC}}(E_{\nu},\cos \theta_z) \frac{d\sigma_{\nu N}^{\text{CC}}(E_{\nu},y)}{dy} \Phi_{\nu_{\alpha}}^{\text{det}}(E_{\nu},\cos \theta_z) \end{aligned}$$

Neutrino energy:

 E_{v}

Real event rate

Real event rate

$$\frac{d^2 N_{\nu_{\alpha}}^{\rm CC}}{dE_{\rm dep} d\theta_{z,\rm rec}} = \int_{-1}^{+1} d\cos\theta_z \int_{E_{\rm dep}}^{\infty} dE_{\nu} \int_0^1 dy \frac{d^3 N_{\nu_{\alpha}}^{\rm CC}}{dE_{\nu} dy d\cos\theta_z} R_E[E_{\rm dep}, E_{\rm sh,\nu_{\alpha}}^{\rm CC}(E_{\nu}, y)] R_{\theta_z}(\theta_{z,\rm rec}, \theta_z)$$

 $\frac{d^2 N_{\nu_{\alpha}}^{\text{CC}}}{dE_{\text{dep}} d\theta_{z, \text{rec}}} = \int_{-1}^{+1} d\cos\theta_z \int_{E_{\text{dep}}}^{\infty} dE_{\nu} \int_{0}^{1} dy \frac{d^3 N_{\nu_{\alpha}}^{\text{CC}}}{dE_{\nu} dy d\cos\theta_z} R_E[E_{\text{dep}}, E_{\text{sh},\nu_{\alpha}}^{\text{CC}}(E_{\nu}, y)] R_{\theta_z}(\theta_{z, \text{rec}}, \theta_z)$

Sum over NC & CC, and all flavors of v and \overline{v} :

$$\frac{d^2 N_{\nu}}{dE_{\rm dep} d\theta_{z,\rm rec}} = \sum_{i}^{\rm NC,CC} \sum_{\alpha}^{e,\mu,\tau} \left(\frac{d^2 N_{\nu_{\alpha}}^i}{dE_{\rm dep} d\theta_{z,\rm rec}} + \nu_{\alpha} \to \bar{\nu}_{\alpha} \right)$$

Total number of events in energy bin $[E_{dep}^{min}, E_{dep}^{max}]$ and direction bin $[\cos_{z, rec}^{min}, \cos_{z, rec}^{max}]$:

$$N_{\nu} = \int_{E_{\rm dep}^{\rm min}}^{E_{\rm dep}^{\rm max}} dE_{\rm dep} \int_{\theta_{z,\rm rec}}^{\theta_{z,\rm rec}^{\rm max}} d\theta_{z,\rm rec} \frac{d^2 N_{\nu}}{dE_{\rm dep} d\theta_{z,\rm rec}}$$

Effect of energy & angular resolution

Changing resolution in E_{dep}

A generic, empirical model of the UHE v spectrum

A generic, empirical model of the UHE v spectrum

A generic, empirical model of the UHE v spectrum

$$E_{\nu}^{2}\Phi_{\bar{\nu}\alpha}(E_{\nu}) = (E_{\nu}^{2}\Phi_{0})f_{\alpha,\oplus}(1-f_{\nu}) \left[\left(\frac{E_{\nu}}{\text{PeV}}\right)^{-\gamma} + \eta_{n}^{\bar{\nu}}\mathcal{G}_{n}(E_{\nu};\alpha_{n}^{\bar{\nu}},\beta_{n}^{\bar{\nu}},\mu_{n}^{\bar{\nu}}) + \eta_{l}^{\bar{\nu}}\mathcal{G}_{l}(E_{\nu};\alpha_{l},\beta_{l}^{\bar{\nu}},\mu_{l}) + \eta_{h}^{\bar{\nu}}\mathcal{G}_{h}(E_{\nu};\alpha_{h},\beta_{h}^{\bar{\nu}},\mu_{h}) \right]$$
Bump from neutron decay
$$Iow-energy p\gamma bump \text{ (from EBL or in source)} (from CMB or in source)}$$

MB, Másson, Valera, In preparation

No significant (> 3σ) evidence for a spectral dip ...

MB, Rosenstroem, Shalgar, Tamborra, *PRD* 2020 See also: Shalgar, **MB**, Tamborra, *PRD* 2020

No significant (> 3σ) evidence for a spectral dip ... so we set upper limits on the coupling g

MB, Rosenstroem, Shalgar, Tamborra, PRD 2020 See also: Shalgar, MB, Tamborra, PRD 2020

No significant (> 3σ) evidence for a spectral dip ... so we set upper limits on the coupling g

Are neutrinos forever?

In the Standard Model (vSM), neutrinos are essentially stable (τ > 10³⁶ yr):
 One-photon decay (v_i → v_j + γ): τ > 10³⁶ (m_i/eV)⁻⁵ yr
 Two-photon decay (v_i → v_j + γ + γ): τ > 10⁵⁷ (m_i/eV)⁻⁹ yr
 Three-neutrino decay (v_i → v_i + v_k + v_k): τ > 10⁵⁵ (m_i/eV)⁻⁵ yr

► BSM decays may have significantly higher rates: $v_i \rightarrow v_j + \phi$

φ: Nambu-Goldstone boson of a broken symmetry (*e.g.*, Majoron)

We work in a model-independent way: the nature of φ is unimportant if it is invisible to neutrino detectors

Flavor content of neutrino mass eigenstates

Neutrinos propagate as an incoherent mix of v_1 , v_2 , v_3 —

Measuring the neutrino lifetime

Earth

Measuring the neutrino lifetime

Earth

Baerwald, **MB**, Winter, *JCAP* 2012

At 6.3 PeV, the Glashow resonance $(v_e + e \rightarrow W)$ should trigger showers in IceCube

- ... unless v₁, v₂ decay to v₃ en route to Earth (the surviving v₃ have little electron content)
- IceCube has seen 1 shower in the 4–8 PeV range, so v₁, v₂ must make it to Earth
- So we set *lower* limits on their lifetimes (in the inverted mass ordering)
- Translated into *upper* limits on coupling

At 6.3 PeV, the Glashow resonance $(\bar{v}_e + e \rightarrow W)$ should trigger showers in IceCube

- ... unless v₁, v₂ decay to v₃ en route to Earth (the surviving v₃ have little electron content)
- IceCube has seen 1 shower in the 4–8 PeV range, so v₁, v₂ must make it to Earth
- So we set *lower* limits on their lifetimes (in the inverted mass ordering)
- Translated into *upper* limits on coupling

At 6.3 PeV, the Glashow resonance $(\bar{v}_e + e \rightarrow W)$ should trigger showers in IceCube -

- ... unless v₁, v₂ decay to v₃ en route to Earth_
 (the surviving v₃ have little electron content)
- IceCube has seen 1 shower in the 4–8 PeV range, so v₁, v₂ must make it to Earth
- So we set *lower* limits on their lifetimes (in the inverted mass ordering)
- Translated into *upper* limits on coupling

At 6.3 PeV, the Glashow resonance $(\bar{v}_e + e \rightarrow W)$ should trigger showers in IceCube

- ... unless v₁, v₂ decay to v₃ en route to Earth (the surviving v₃ have little electron content)
- IceCube has seen 1 shower in the 4–8 PeV range, so v₁, v₂ must make it to Earth

So we set *lower* limits on their lifetimes (in the inverted mass ordering)

Translated into *upper* limits on coupling

At 6.3 PeV, the Glashow resonance $(v_e + e \rightarrow W)$ should trigger showers in IceCube

- ... unless v₁, v₂ decay to v₃ en route to Earth (the surviving v₃ have little electron content)
- IceCube has seen 1 shower in the 4–8 PeV range, so v₁, v₂ must make it to Earth
- So we set *lower* limits on their lifetimes (in the inverted mass ordering)

► Translated into *upper* limits on coupling - $\mathcal{L} = g_{ij}\bar{\nu}_i\nu_j\phi + h_{ij}\bar{\nu}_j\gamma_5\nu_j\phi + h.c.$

Astrophysical sources

Earth

Different production mechanisms yield different flavor ratios: $(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{tot}$

Flavor ratios at Earth ($\alpha = e, \mu, \tau$):

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\nu_{\beta}\to\nu_{\alpha}} f_{\beta,S}$$
Astrophysical sources

Earth

Different production mechanisms yield different flavor ratios: $(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{tot}$

Flavor ratios at Earth (
$$\alpha = e, \mu, \tau$$
):

$$f_{\alpha, \oplus} = \sum_{\beta = e, \mu, \tau} P_{\nu_{\beta} \to \nu_{\alpha}} f_{\beta, S}$$
Standard oscillations
or
new physics

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

From Earth to sources: we let the data teach us about $f_{\alpha,S}$

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

Two limitations:

Allowed flavor regions overlap – Insufficient precision in the mixing parameters Will be overcome by 2030

Measurement of flavor ratios – Cannot distinguish between pion-decay and muon-damped benchmarks even at 68% C.R. (1σ) *Will be overcome by* 2040

We can compute the oscillation probability more precisely:

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\beta\alpha} f_{\beta,\mathrm{S}}$$

So we can convert back and forth between source and Earth more precisely

For a future experiment ε = JUNO, DUNE, Hyper-K:

We combine experiments in a likelihood:

$$-2\log \mathcal{L}(\boldsymbol{\theta}) = \sum_{\varepsilon} \chi_{\varepsilon}^2(\boldsymbol{\vartheta})$$

Ingredient #1: Flavor ratios measured at Earth,

Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Song, Li, Argüelles, **MB**, Vincent, 2012.12893 **MB** & Ahlers, *PRL* 2019

Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Song, Li, Argüelles, **MB**, Vincent, 2012.12893 **MB** & Ahlers, *PRL* 2019

Ingredient #1: Flavor ratios measured at Earth, $(f_{e,\oplus}, f_{\mu,\oplus}, f_{\tau,\oplus})$ Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Posterior probability of $f_{\alpha,S}$ [MB & Ahlers, *PRL* 2019]:

$$\mathcal{P}(\boldsymbol{f}_s) = \int d\boldsymbol{\vartheta} \mathcal{L}(\boldsymbol{\vartheta}) \mathcal{P}_{\mathrm{exp}}(\boldsymbol{f}_{\oplus}(\boldsymbol{f}_{\mathrm{S}},\boldsymbol{\vartheta}))$$

30

Ingredient #1: Flavor ratios measured at Earth, $(f_{e,\oplus}, f_{\mu,\oplus}, f_{\tau,\oplus})$ Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Posterior probability of $f_{\alpha,S}$ [MB & Ahlers, *PRL* 2019]:

$$\mathcal{P}(\boldsymbol{f}_{s}) = \int d\boldsymbol{\vartheta} \mathcal{L}(\boldsymbol{\vartheta}) \mathcal{P}_{\exp}(\boldsymbol{f}_{\oplus}(\boldsymbol{f}_{\mathrm{S}},\boldsymbol{\vartheta}))$$

Oscillation experiments Neutrino telescopes

Ingredient #1: Flavor ratios measured at Earth, $(f_{e,\oplus}, f_{\mu,\oplus}, f_{\tau,\oplus})$ Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Posterior probability of $f_{\alpha,S}$ [MB & Ahlers, *PRL* 2019]:

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\beta\to\alpha} f_{\beta,S}$$
$$\mathcal{P}(\boldsymbol{f}_s) = \int d\boldsymbol{\vartheta} \mathcal{L}(\boldsymbol{\vartheta}) \mathcal{P}_{\exp}(\boldsymbol{f}_{\oplus}(\boldsymbol{f}_{S},\boldsymbol{\vartheta}))$$

Oscillation experiments Neutrino telescopes

Note:

All plots shown are for normal neutrino mass ordering (NO); inverted ordering looks similar

Note:

All plots shown are for normal neutrino mass ordering (NO); inverted ordering looks similar

Note:

All plots shown are for normal neutrino mass ordering (NO); inverted ordering looks similar

Note:

All plots shown are for normal neutrino mass ordering (NO); inverted ordering looks similar

Note:

All plots shown are for normal neutrino mass ordering (NO); inverted ordering looks similar

Note:

All plots shown are for normal neutrino mass ordering (NO); inverted ordering looks similar

Two limitations:

Allowed flavor regions overlap – Insufficient precision in the mixing parameters

Measurement of flavor ratios – Cannot distinguish between pion-decay and muon-damped benchmarks even at 68% C.R. (1σ)

Two limitations:

Allowed flavor regions overlap – Insufficient precision in the mixing parameters Will be overcome by 2030

Measurement of flavor ratios – Cannot distinguish between pion-decay and muon-damped benchmarks even at 68% C.R. (1σ)

Song, Li, Argüelles, **MB**, Vincent, 2012.12893 See also: **MB**, Beacom, Winter, *PRL* 2015

Two limitations:

Allowed flavor regions overlap – Insufficient precision in the mixing parameters Will be overcome by 2030

Measurement of flavor ratios – Cannot distinguish between pion-decay and muon-damped benchmarks even at 68% C.R. (1σ) Will be overcome by 2040

Song, Li, Argüelles, **MB**, Vincent, 2012.12893 See also: **MB**, Beacom, Winter, *PRL* 2015

Theoretically palatable flavor regions $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian

Theoretically palatable flavor regions

 $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

Оr

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian

Theoretically palatable flavor regions

 $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

Or

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian Ingredient #2:

Theoretically palatable flavor regions

= MB, Beacom, Winter, PRL 2015 Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

or

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Theoretically palatable flavor regions

 $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

0r

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, PRL 2015]; the new ones are Bayesian Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

0.65

0.55

 $\sin^2 \theta_{23}$

0.60

2020: Use χ^2 profiles from 2.0 the NuFit 5.0 global fit 1.8 (solar + atmospheric 1.6 1.4 + reactor + accelerator) 1.2 Esteban *et al.*, *JHEP* 2020 $\delta_{\rm CP}/\pi$ www.nu-fit.org 1.0 0.8 0.6 0.4 0.2 NuFit 5.0 0.400.45 0.50

Theoretically palatable flavor regions

 $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

Or

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, PRL 2015]; the new ones are Bayesian Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Note:

Note:

Note: All plots shown are for normal

neutrino mass ordering (NO); inverted ordering looks similar

Note:

Note:

Note:

We can compute the oscillation probability more precisely:

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\beta\alpha} f_{\beta,\mathrm{S}}$$

So we can convert back and forth between source and Earth more precisely

For a future experiment ε = JUNO, DUNE, Hyper-K:

We combine experiments in a likelihood:

$$-2\log \mathcal{L}(\boldsymbol{\theta}) = \sum_{\varepsilon} \chi_{\varepsilon}^2(\boldsymbol{\vartheta})$$

2020

Allowed regions: overlapping Measurement: imprecise

2020

Allowed regions: overlapping Measurement: imprecise

Not ideal

2020

Allowed regions: overlapping Measurement: imprecise

Not ideal

2030

Allowed regions: well separated Measurement: improving

2020

Allowed regions: overlapping Measurement: imprecise

Not ideal

2030

Allowed regions: well separated Measurement: improving

Nice

2020

2030

0.0

Fraction of v_e , $f_{e,\oplus}$

Allowed regions: overlapping Measurement: imprecise

Not ideal

Allowed regions: well separated Measurement: improving

Nice

2040

Allowed regions: well separated Measurement: precise

2020

2030

2040

Allowed regions: overlapping Measurement: imprecise

Not ideal

Allowed regions: well separated Measurement: improving

Nice

Allowed regions: well separated Measurement: precise

Success

Theoretically palatable regions: 2020 vs. 2040

By 2040:

Theory –

Mixing parameters known precisely: allowed flavor regions are *almost* points (already by 2030)

Measurement of flavor ratios – Can distinguish between similar predictions at 99.7% C.R. (3σ)

Can finally use the full power of flavor composition for astrophysics and neutrino physics

Song, Li, MB, Argüelles, Vincent, 2012.XXXXX

No unitarity? No problem

Energy dependence of the flavor composition?

Different neutrino production channels accessible at different energies –

TP13: py model, target photons from e⁻e⁺ annihilation [Hümmer+, Astropart. Phys. 2010]
Will be difficult to resolve [Kashti, Waxman, PRL 2005; Lipari, Lusignoli, Meloni, PRD 2007]

Energy dependence of flavor ratios – in IceCube-Gen2 Measured:

Energy dependence of flavor ratios – in IceCube-Gen2 Measured: Inferred (at sources):

Can we detect the contribution of multiple v production mechanisms?

Assume real value $k_{\pi} = 1$ ($k_{\mu} = k_n = 0$)

By 2040, how well will we recover the real value? [Adding spectrum information (not shown) will likely help]

Can we detect the contribution of multiple v production mechanisms?

Assume real value $k_{\pi} = 1$ ($k_{\mu} = k_n = 0$)

By 2040, how well will we recover the real value? [Adding spectrum information (not shown) will likely help]

Can we detect the contribution of multiple v production mechanisms?

Assume real value $k_{\pi} = 1$ ($k_{\mu} = k_n = 0$)

By 2040, how well will we recover the real value? [Adding spectrum information (not shown) will likely help]

Can we detect the contribution of multiple v production mechanisms?

Assume real value $k_{\pi} = 1$ ($k_{\mu} = k_n = 0$)

By 2040, how well will we recover the real value? [Adding spectrum information (not shown) will likely help]

Can we detect the contribution of multiple v production mechanisms?

$$f_{\rm S} = k_{\pi} f_{\rm S}^{\pi} + k_{\mu} f_{\rm S}^{\mu} + k_{n} f_{\rm S}^{n}$$

$$\frac{\pi \text{ decay: } \mu \text{ damped: } n \text{ decay: } (1/3, 2/3, 0) \quad (0, 1, 0) \quad (1, 0, 0)$$
Propagate to Earth
$$f_{\oplus}$$

Assume real value $k_{\pi} = 1$ ($k_{\mu} = k_n = 0$)

By 2040, how well will we recover the real value? [Adding spectrum information (not shown) will likely help]

1.0

0.8

0.9

1.0

1.0

0.8 0.9

Side note: Improving flavor-tagging using *echoes*

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_{τ} –

Side note: Improving flavor-tagging using echoes

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_{τ} –

Side note: Improving flavor-tagging using echoes

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_{τ} –

