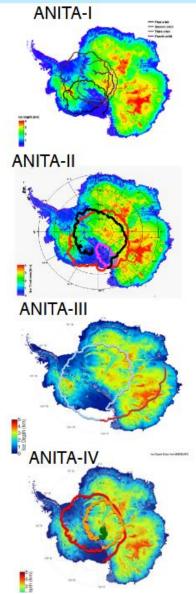
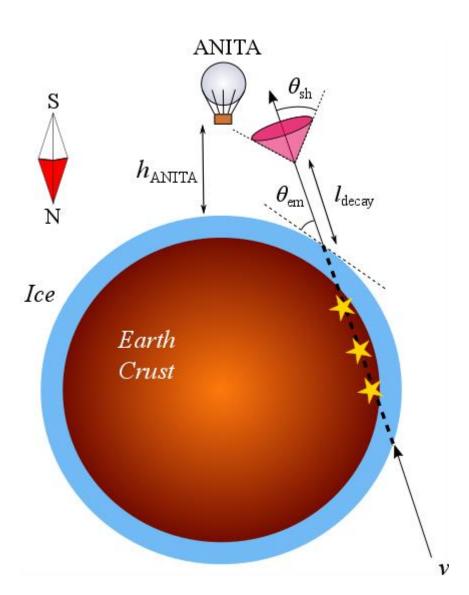
Dark-Matter Interpretations of the ANITA Anomalous Events

Lucien HEURTIER ~~(IP3




ANITA

- ANtarctic Impulsive Transient Antenna
 - NASA ultralong duration balloon experiment
- Seeking radio signals from earth-skimming UHE neutrinos
- To this date, 4 flights

ANITA-Lite	. ANITA-I	ANITA-II	ANITA-III	ANITA-IV
			RR	
2003-2004	2006-2007	2008-2009	2014-2015	2016
18 days, 2 antennas	35 days, 32 antennas	30 days, 40 antennas	22 days, 48 antennas	29 days, 48 antennas
Piggy-back on TIGER	Multi-band, Pol-independent trigger	Multi-band, VPol trigger	Full-band HPol + VPol trigger	Full-band, Lin-Pol trigger
Analyzed	Analyzed	Analyzed	Recently analyzed	Analysis Ongoing

Upward-propagating EAS

Three types of interactions in the SM:

- Charged current: Neutrinos → leptons
- Neutral current : Neutrinos → Neutrinos
- Regeneration: Lepton → Neutrino + sh.

Propagation depends on the particle energy, local density, and particle interactions...

Two anomalous events with emergence angles 27° and 35° and energies O(1)EeV.

At such emergence angles, a SM neutrino cannot cross the Earth.

No astrophysical source identified.

Events Features

ANITA	AAE 061228	AAE 141220
Flight & Event	ANITA-I #3985267	ANITA-III #15717147
Date & Time (UTC)	2006-12-28 00:33:20	2014-12-20 08:33:22.5
Equatorial coordinates (J2000)	R.A. 282°.14064, Dec. $+20$ °.33043	R.A. 50°.78203, Dec. +38°.65498
Energy $\varepsilon_{\rm cr}$	$0.6 \pm 0.4 \mathrm{EeV}$	$0.56^{+0.30}_{-0.20}\mathrm{EeV}$
Zenith angle z'/z	$117^{\circ}.4 / 116^{\circ}.8 \pm 0^{\circ}.3$	$125^{\circ}.0 / 124^{\circ}.5 \pm 0^{\circ}.3$
Earth chord length ℓ	$5740 \pm 60 \mathrm{km}$	$7210 \pm 55 \mathrm{km}$
Mean interaction length for $\varepsilon_{\nu} = 1 \mathrm{EeV}$	$290\mathrm{km}$	$265\mathrm{km}$
$p_{\rm SM}(\varepsilon_{\tau}>0.1{\rm EeV}) \ {\rm for} \ \varepsilon_{\nu}=1{\rm EeV}$	4.4×10^{-7}	3.2×10^{-8}
$p_{\rm SM}(z>z_{\rm obs})$ for $\varepsilon_{\nu}=1{\rm EeV},\varepsilon_{\tau}>0.1{\rm EeV}$	6.7×10^{-5}	3.8×10^{-6}
$n_{\tau}(1-10 \text{PeV}): n_{\tau}(10-100 \text{PeV}): n_{\tau}(>0.1 \text{EeV})$	34:35:1	270:120:1

[Fox, Sigurdson, Murase et al., Nov 18']

Possible Interpretations

SM-origin upward-going Extensive Air Showers (EAS) excluded...

Pure SM, downward going

- Downward-going events, interacting with the geomagnetic field [de Vries, Prohira, '19]
- Downward-going events, reflected by sub-layers of the ice sheet [Shoemaker, Kusenko, Munneke, Romero-Wolf, Schroeder, Siegert, '19]

BSM, downward going

- Axionic UHECR reflecting on the ice [Esteban, Lopez-Pavon, Martinez-Soler, Salvado, '19]
- Askaryan emission in the Ice, induced by heavy dark matter [Hooper, Wegsman, Deaconu, Vieregg, '19]

BSM, upward going

- SUSY interpretations [Fox, Sigurdson, Murase et al., '18] [Collins, P. S. Bhupal Dev, and Y. Su, '18]
- Sterile neutrino converting in the Earth [Cherry, Shoemaker, '19][Huang, '18]

DM -> SM scattering, upward going

Dark Matter decaying into leptons [Cline, Gross, Xue '19]

DM -> BSM scattering, upward going

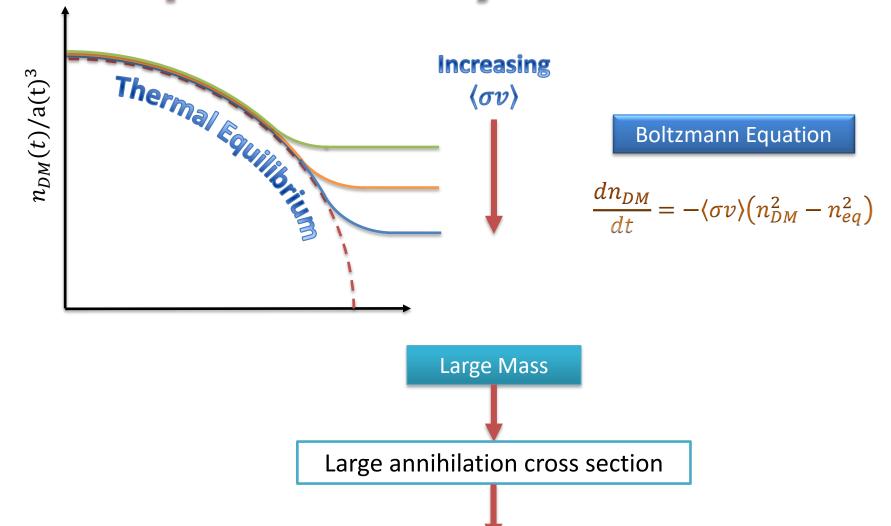
- Dark Matter decaying into RH neutrinos [LH, Mambrini, Pierre '19]
- Inelastic Boosted Dark Matter [LH, Kim, Park, Shin, '19]

This talk

Events Features

ANITA	AAE 061228	AAE 141220
Flight & Event	ANITA-I #3985267	ANITA-III #15717147
Date & Time (UTC)	2006-12-28 00:33:20	2014-12-20 08:33:22.5
Equatorial coordinates (J2000)	R.A. 282°.14064, Dec. $+20$ °.33043	R.A. 50°.78203, Dec. +38°.65498
Energy $\varepsilon_{\rm cr}$	$0.6 \pm 0.4 \mathrm{EeV}$	$0.56^{+0.30}_{-0.20}\mathrm{EeV}$
Zenith angle z'/z	$117^{\circ}.4 / 116^{\circ}.8 \pm 0^{\circ}.3$	$125^{\circ}.0 / 124^{\circ}.5 \pm 0^{\circ}.3$
Earth chord length ℓ	$5740 \pm 60 \mathrm{km}$	$7210 \pm 55 \mathrm{km}$
Mean interaction length for $\varepsilon_{\nu} = 1 \mathrm{EeV}$	$290\mathrm{km}$	$265\mathrm{km}$
$p_{\rm SM}(\varepsilon_{\tau}>0.1{\rm EeV}) \ {\rm for} \ \varepsilon_{\nu}=1{\rm EeV}$	4.4×10^{-7}	3.2×10^{-8}
$p_{\rm SM}(z>z_{\rm obs})$ for $\varepsilon_{\nu}=1{\rm EeV},\varepsilon_{\tau}>0.1{\rm EeV}$	6.7×10^{-5}	3.8×10^{-6}
$n_{\tau}(1-10 \text{PeV}): n_{\tau}(10-100 \text{PeV}): n_{\tau}(>0.1 \text{EeV})$	34:35:1	270:120:1

[Fox, Sigurdson, Murase et al., Nov 18']


I c e C u b e	IceCube-140611	IceCube-140109	IceCube-121205
EHE Northern Track ID	#27	#24	#20
Date & Time (UTC or MJD)	2014-06-11 04:54:24	56666.5	56266.6
Equatorial coordinates (J2000)	R.A. $110^{\circ}.34 \pm 0^{\circ}.22$,	R.A. 293°29,	R.A. 169°61,
	Dec. $+11.42 \pm 0.08$	Dec. $+32^{\circ}.82$	Dec. $+28^{\circ}04$
Zenith angle z	101°.42	122°.82	118°04
Earth chord length ℓ	$2535\mathrm{km}$	$6910\mathrm{km}$	$5990\mathrm{km}$
As tau: $\varepsilon_{\tau, \text{obs}}$ (median)	$70\mathrm{PeV}$	$13\mathrm{PeV}$	$12\mathrm{PeV}$
Mean interaction length for $\varepsilon_{\nu} = 1 \mathrm{EeV}$	$340\mathrm{km}$	$270\mathrm{km}$	$285\mathrm{km}$
$p_{\rm SM}(\varepsilon_{\tau} > \varepsilon_{\tau, \rm obs}) \text{ for } \varepsilon_{\nu} = 1 {\rm EeV}$	2.2×10^{-4}	3.8×10^{-6}	1.0×10^{-5}
$p_{\rm SM}(z>z_{\rm obs}) \text{ for } \varepsilon_{\nu}=1 {\rm EeV}, \varepsilon_{\tau}>\varepsilon_{\tau, {\rm obs}}$	5.0×10^{-3}	4.5×10^{-5}	1.8×10^{-4}

[Fox, Sigurdson, Murase et al., Nov 18']

Why Heavy Dark Matter?

Why is ANITA relevant to detect it?

Super - Heavy Dark Matter

Unitarity bound : $m_{DM} \lesssim O(100)$ TeV

How can one detect Heavy Dark-Matter particles?

No Thermal equilibrium

Low interactions

Large Mass

Low number density

How can one detect Heavy Dark-Matter particles?

No Thermal equilibrium

Low interactions

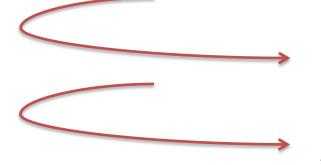
Large Mass

Low number density

Direct detection ? Difficult...

How can one detect Heavy Dark-Matter particles?

No Thermal equilibrium



Low interactions

Large Mass

Low number density

Direct detection? Difficult...

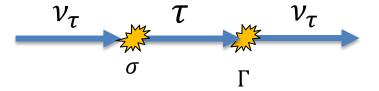
Annihilation in the Galaxy ? $\propto n_{DM}^2$ Difficult...

How can one detect Heavy Dark-Matter particles?

No Thermal equilibrium

Low interactions

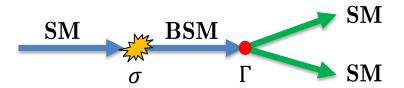
Large Mass

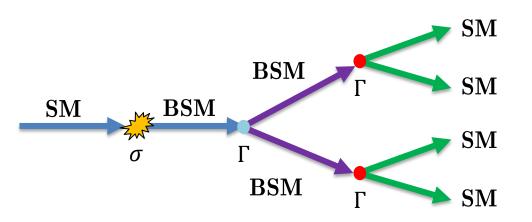

Low number density

Direct detection? Difficult...

Annihilation in the Galaxy ? $\propto n_{DM}^2$ Difficult...

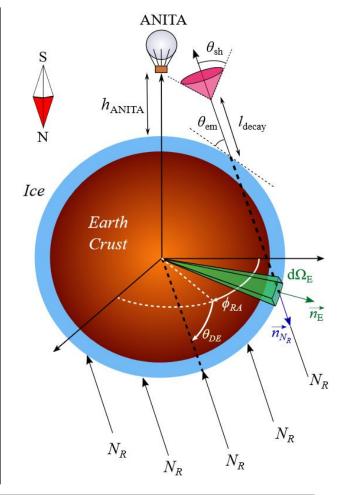
Decay in the Galaxy ? $\propto n_{DM}$ Maybe ?


BSM INTERACTIONS AND UHECR PROPAGATION



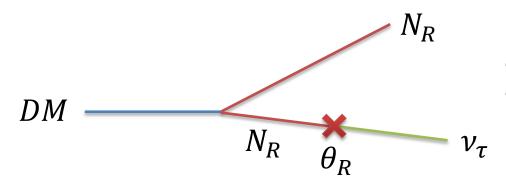
In the SM, neutrinos can interact, regenerate, interact, ...

BSM INTERACTIONS AND UHECR PROPAGATION


- Energy decreases with the number of interactions
- Energy and angular distributions affected by the interaction topologies...

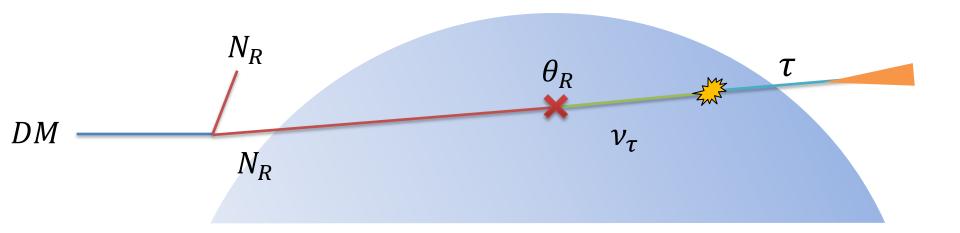
In a given BSM model:

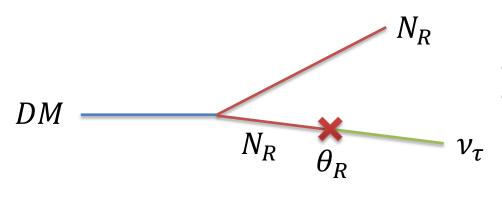
- 1. Identify the relevant interactions;
- 2. Implement the different interaction topologies in a MC simulation;
- 3. Calculate the differential flux when SM particles exit the Earth after propagation


Challenges for BSM interpretations

- Understand the total number of events
 - 1. Incoming Flux
 - 2. Probability of scattering
 - 3. Probability that the scatt. Products escape the Earth
 - 4. Probability that they decay in the low atmmosphere
- Understand the angular distribution of the events
 - 1. Integrate over incoming particles directions
 - Integrate over points of impact on the Earth surface
 - 3. Analyse the results emergence angle per emergence angle

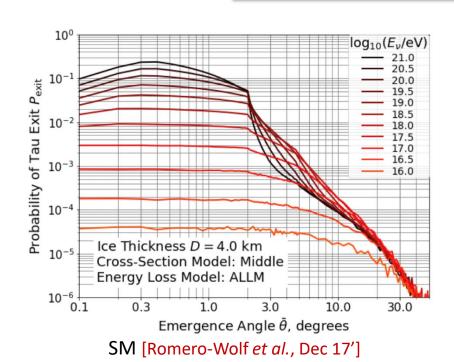
$$\begin{split} &\frac{\mathrm{d}^{2}A_{\mathrm{eff}}}{\mathrm{d}E_{\mathrm{exit}}\mathrm{d}\theta_{\mathrm{em}}}(E_{\mathrm{exit}},\theta_{\mathrm{em}}\mid E_{\mathrm{N}},\theta_{\mathrm{N}},\phi_{\mathrm{N}}) = R_{\mathrm{E}}^{2}\int\mathrm{d}\Omega_{\mathrm{E}}\vec{n}_{\mathrm{N}}\cdot\vec{n}_{E} \\ &\times\frac{\mathrm{d}P_{\mathrm{exit}}}{\mathrm{d}E_{\mathrm{exit}}}(E_{\mathrm{exit}},\theta_{\mathrm{em}}\mid E_{\mathrm{N}},\theta_{\mathrm{N}},\phi_{\mathrm{N}},\theta_{\mathrm{E}},\phi_{\mathrm{E}}) \times\int\frac{\mathrm{d}P_{\mathrm{decay}}}{\mathrm{d}l}(l\mid E_{\mathrm{exit}}) \times P_{\mathrm{det}}(\theta_{\mathrm{sh}}|l,\theta_{\mathrm{N}},\phi_{\mathrm{N}},\theta_{\mathrm{E}},\phi_{\mathrm{E}})\mathrm{d}l \end{split}$$

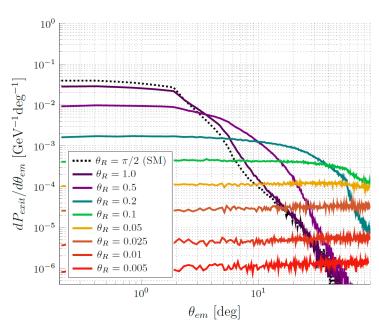

A right-handed neutrino interpretation [LH, Mambrini, Pierre, '19]


Required:

- RH neutrino long-lived
- Satisfies cosmo. Bounds (BBN, CMB, direct searches)

Propagation and conversion into tau's

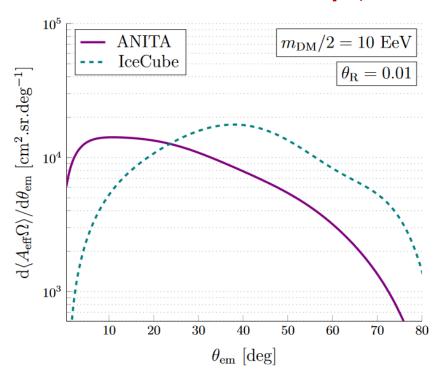

A right-handed neutrino interpretation [LH, Mambrini, Pierre, '19]

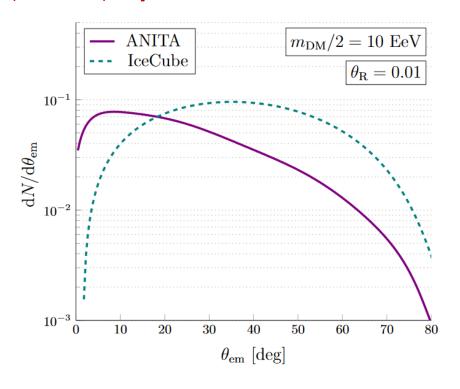


Required:

- RH neutrino long-lived
- Satisfies cosmo. Bounds (BBN, CMB, direct searches)

Propagation and conversion into tau's

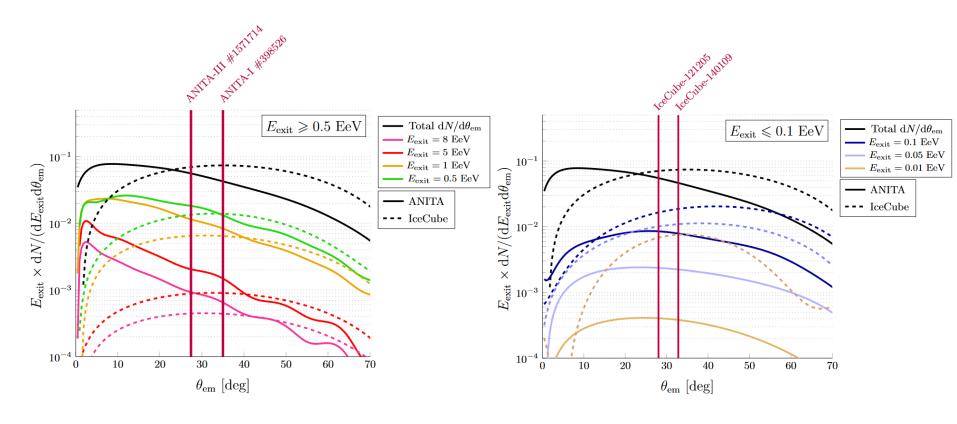




[LH, Y. Mambrini, M. Pierre, '19]

ANITA and IceCube detection

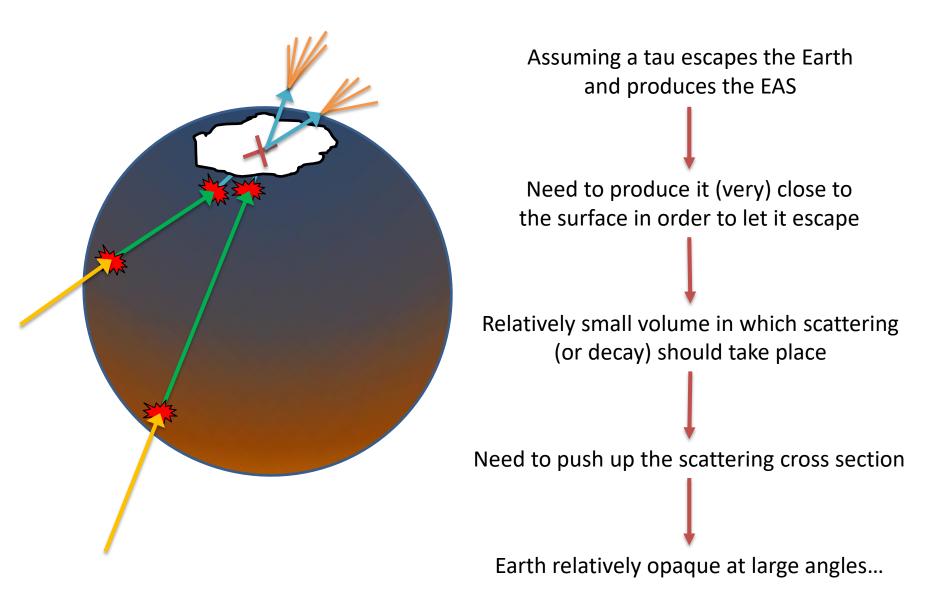
[LH, Y. Mambrini, M. Pierre, '19]



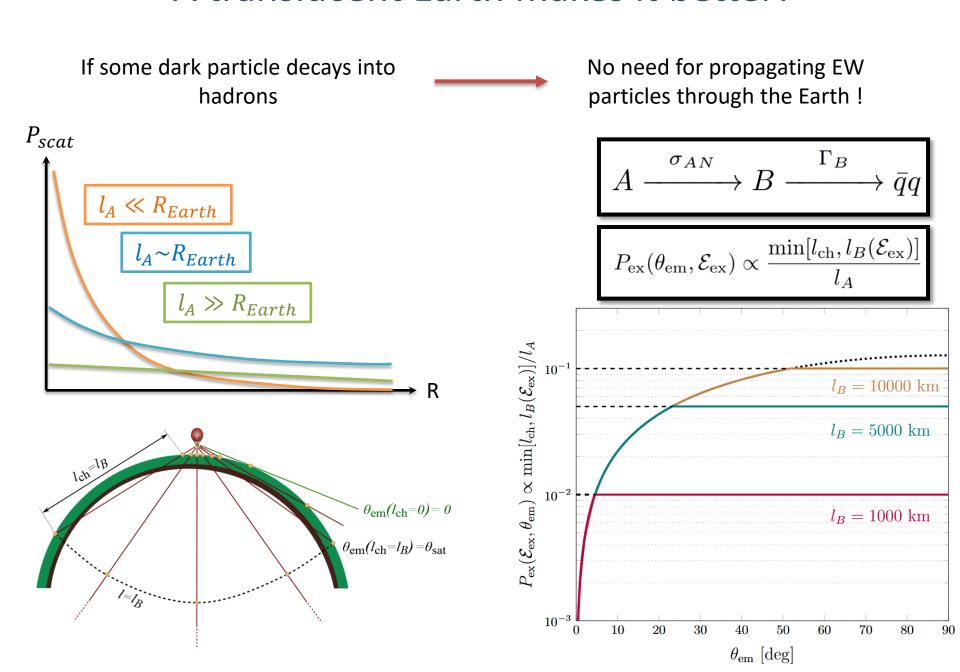
$$N_{
m tot}^{
m ANITA} \simeq 3.03 \left(\frac{\theta_R}{0.01}\right)^2 \left(\frac{10^{23} {
m s}}{ au_{
m DM}}\right) \left(\frac{T_{
m exp}}{85.5 {
m days}}\right) \left(\frac{20 {
m EeV}}{m_{
m DM}}\right)^{0.67} \qquad [\theta_R \lesssim 0.025 \, ; \, m_{
m DM} > 2 {
m EeV}]$$

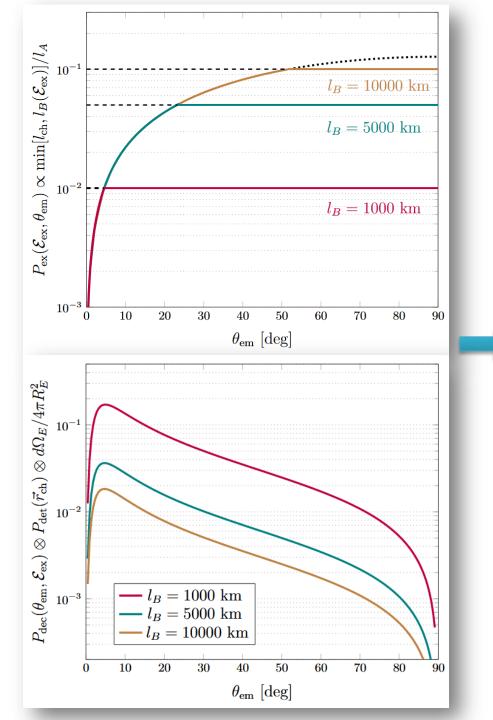
$$N_{\rm tot}^{\rm IceCube} \simeq 3.65 \left(\frac{\theta_R}{0.01}\right)^2 \left(\frac{10^{23} \text{s}}{\tau_{\rm DM}}\right) \left(\frac{T_{\rm exp}}{3142.5 \text{ days}}\right) \left(\frac{20 \text{ EeV}}{m_{\rm DM}}\right)^{0.70}$$
 [$\theta_R \lesssim 0.025 \, ; \ m_{\rm DM} > 2 \text{ EeV}$]

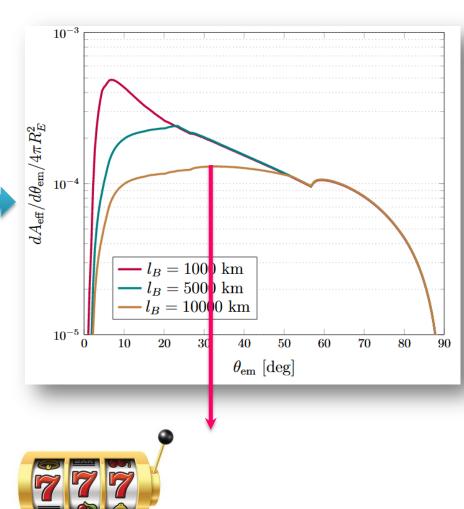
ANITA/IceCube detection

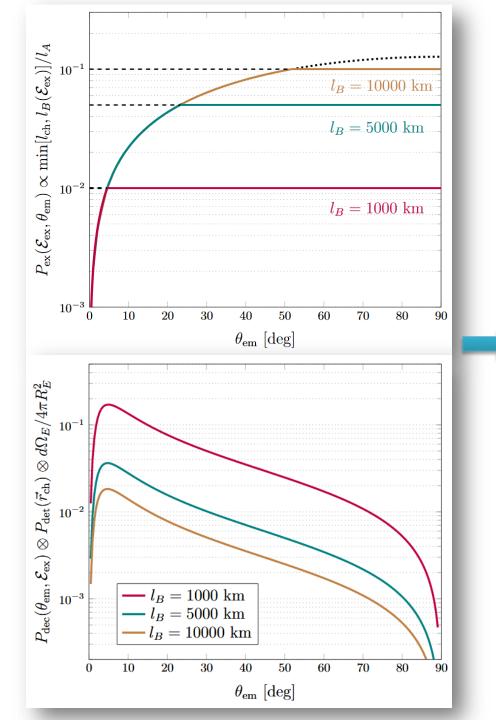

Energies > 0.5 EeV: Favour an ANITA detection at angles ~ 30°

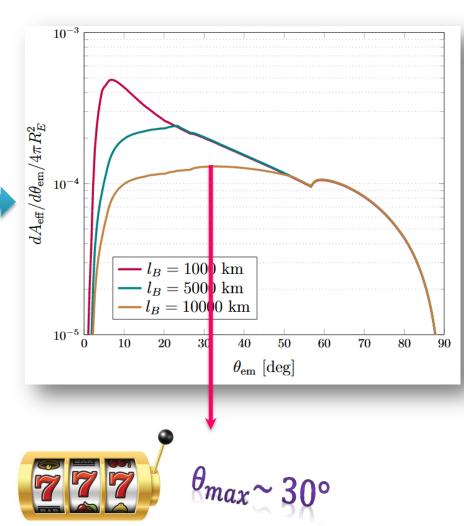
Energies < 0.5 EeV : Favour an IceCube detection at angles ~ 30°


Perfect complementarity between the two collaborations detection!

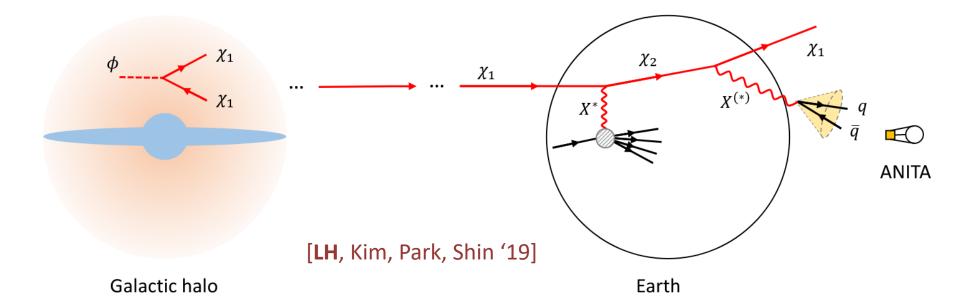

[LH, Y. Mambrini, M. Pierre, '19]


How to get a better angular distribution?

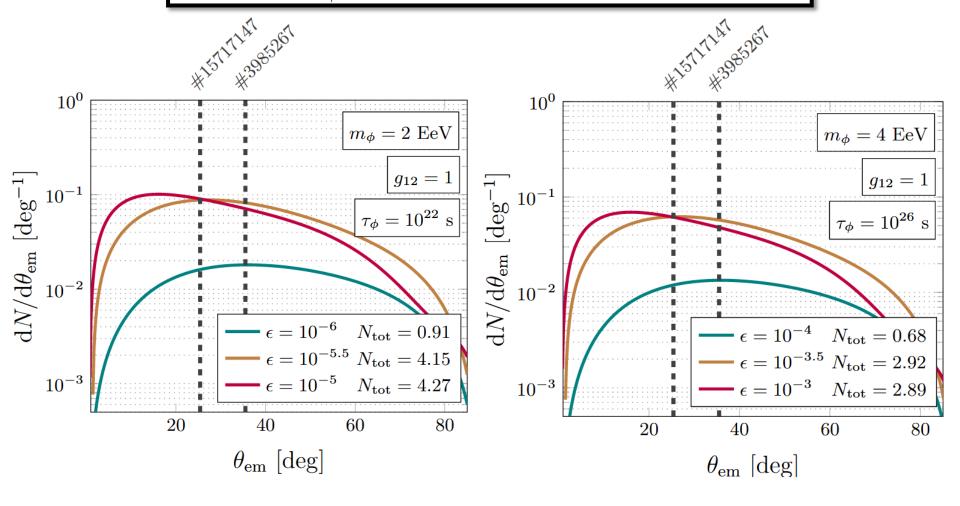



A translucent Earth makes it better!

Inelastic Boosted Dark Matter


$$\mathcal{L}_{\text{int}} \supset y_{\phi} \phi \bar{\chi}_{1} \chi_{1} - \frac{\epsilon}{2} F_{\mu\nu} X^{\mu\nu} + (g_{12} \bar{\chi}_{2} \gamma^{\mu} \chi_{1} X_{\mu} + \text{h.c.})$$

[Kim, Park, Shin 1702.02944][Kim, Park, Shin 1612.06867][Giud ce, Kim, Park, Shin, 1712.0712]

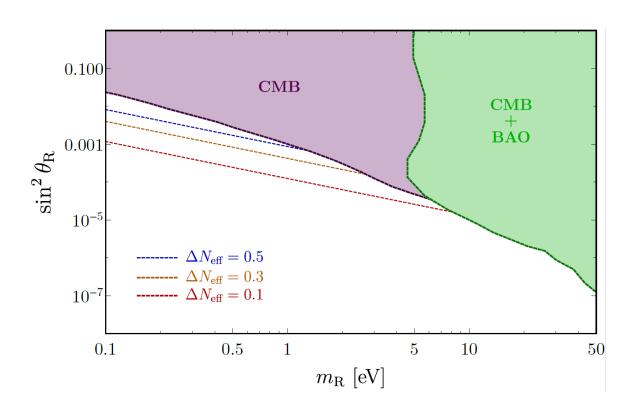

Super-heavy DM

Light, boosted DM

 $U(1)_X$ —charged dark sector

On-shell:
$$m_2 > m_1 + m_X, \ m_X = 0.5 \ {\rm GeV},$$
 $m_{\phi} = 2 \ {\rm EeV},$ Off-shell: $m_2 = 2.5 \ {\rm GeV}, \ m_1 = 2 \ {\rm GeV}, \ m_X = 2 \ {\rm GeV},$ $m_{\phi} = 4 \ {\rm EeV}.$

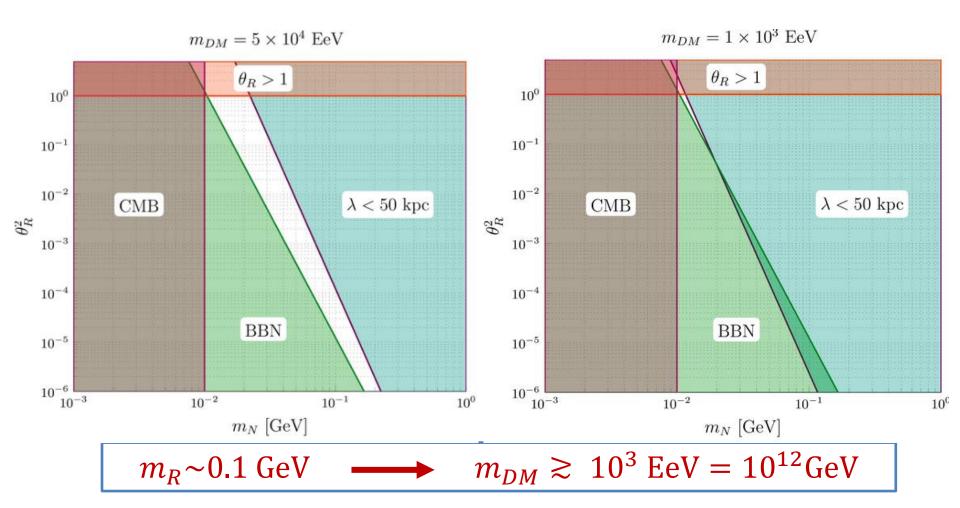
On-shell scenario


Off-shell scenario

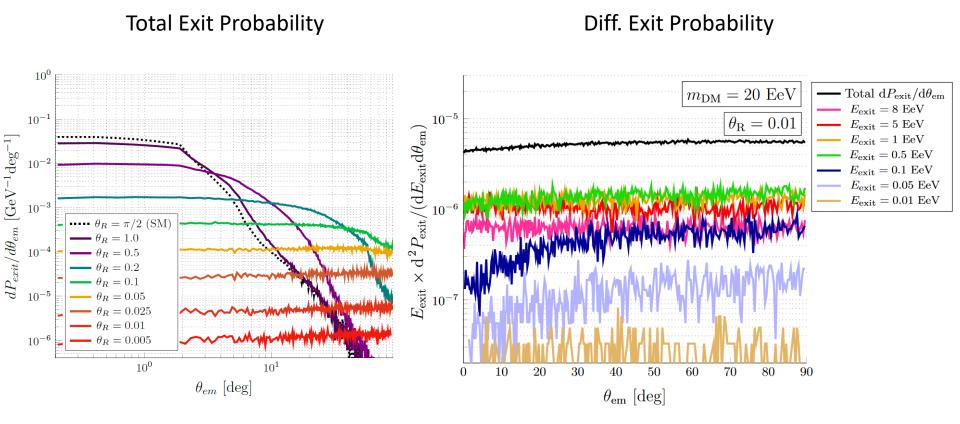
Conclusion

- The presence in the galaxy of a metastable super-heavy dark matter particle might lead to interesting signatures accessible to UHECR searches.
- The presence of a **BSM sector modifies the way UHECRs propagate** through the Earth.
- This modification can lead to non-trivial energy distributions of the events produced in various detectors.
- A dark scalar decaying into right-handed neutrinos can explain the recent measurements of both IceCube and ANITA. A dark-matter mass >1-10 EeV predicts a perfect complementarity between the two collaborations.
- On the other hand, models of **inelastic boosted dark matter**, where incoming particles are able to up-scatter within the dark sector before decaying into hadrons, **can lead to a clean angular distribution for the ANITA** events.
- The **Earth's volume can act as a gigantic beam –dump detector** which is promising for the search of heavy new physics.

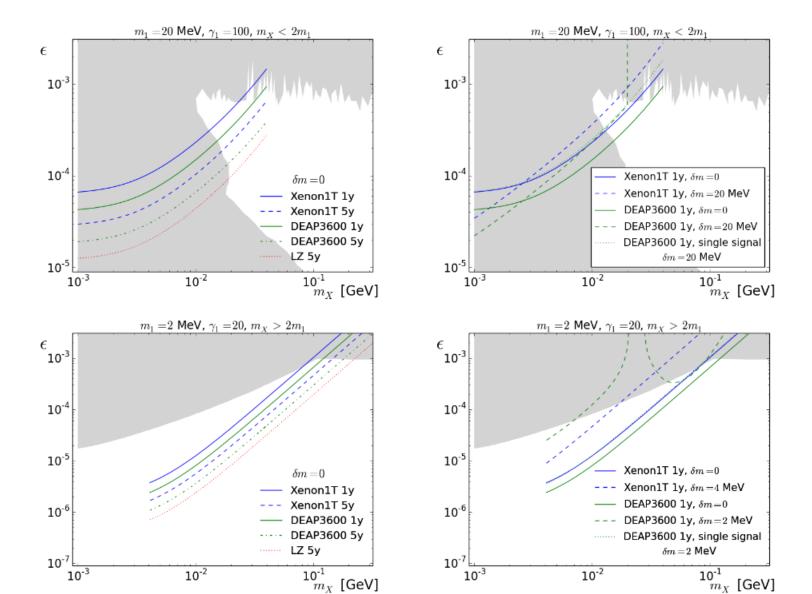
A right-handed neutrino interpretation


 $m_R < 10 \; \mathrm{eV} \; \mathrm{or} \; m_R {\sim} 0.1 \; \mathrm{GeV}$

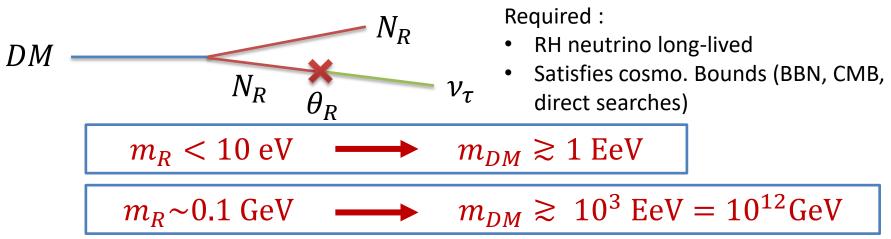
 $m_R < 10 \text{ eV} \longrightarrow m_{DM} \sim 10 \text{ EeV}$


A right-handed neutrino interpretation

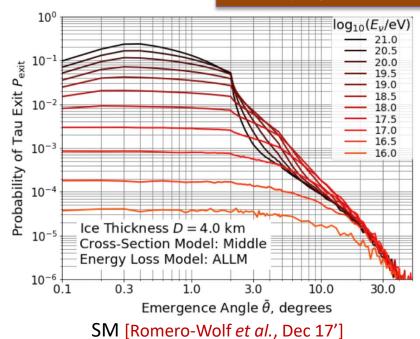
 $m_R < 10 \text{ eV} \text{ or } m_R \sim 0.1 \text{ GeV}$

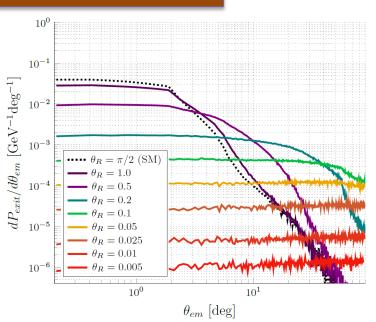


Approaches the inflaton mass...


Differential Exit Probability

Access to the energy distribution per emergence angme of the predicted events




A right-handed neutrino interpretation [LH, Mambrini, Pierre, '19]

Approaches the inflaton mass...

Propagation and conversion into tau's

[LH, Y. Mambrini, M. Pierre, '19]