

Introduction and HVP dispersive contribution to the muon g-2 prediction

Michel Davier

Laboratoire Irène Joliot-Curie (IJCLab) – CNRS/IN2P3 et Université Paris-Saclay

- April 7 2021: announcement of the first result of the Fermilab experiment measuring the muon magnetic anomaly
- Comparison with the theoretical prediction within the Standard Model shows an excess at the level of 4.2 σ , larger than the previous 3.7 σ with respect to the Brookhaven experiment
- In this talk, after a general introduction and some information on the experiment, I will review the status of the hadronic vacuum polarization contribution using a dispersion relation based on the measured cross sections for e+ e- → hadrons

The electron g-2 early history

- Dirac's relativistic theory of the electron (1928) naturally accounted for quantized particle spin, and described elementary spin-1/2 particles (and their anti-particles)
- In the classical limit, one finds the Pauli equation with a magnetic moment:

 $\vec{\mu} = -g_e \frac{e}{2m_e} \vec{S}$ with $|g_e| = 2$ is the gyromagnetic factor

- Dirac's prediction was confirmed to 0.1% by Kinsler & Houston in 1934 through studying the Zeeman effect in neon
- A deviation from $g_e = 2$ was established by Nafe, Nels & Rabi only in 1947 by comparing the hyperfine structure of hydrogen and deuterium spectra
- A first precision measurement of $g_e = 2.00344 \pm 0.00012$ (*wrong: 2.00232...*!) was made by Kusch & Foley in 1947 using Rabi's atomic beam magnetic resonance technique magnetic anomaly a = (g-2)/2
- Why does g_e deviate from 2 at 10⁻³ level ? (new physics?)

2

Quantum field theory

- Development of quantum electrodynamics (Dyson, Feynman, Schwinger, Tomonaga) : emission/absorption of photons by electrons implies quantum fluctuations (virtual particles), divergences are regularized by renormalization. Amplitude for any QED process written as a perturbative expansion in the coupling constant e (visualized with Feynman diagrams for any order)
- Dirac's g = 2 corresponds to the lowest order QED graph

JULIAN SC

First correction (order α) computed by Schwinger in 1948, in agreement with the experimental anomaly

$$a_e^{\text{QED}} = \frac{\alpha}{2\pi} + \dots = 0.001\ 161\ \dots$$

As precision improved: necessity to include higher-order QED terms, as well as contributions from other known interactions and possibly beyond what we know

Why measure the muon g-2?

- 3 families of fermions (leptons and quarks) with universal coupling strengths to electroweak interactions
- The 3 charged leptons I = (e, μ , τ) differ only by their own leptonic quantum numbers and their masses m_e = 0.511 MeV m_u = 105.7 MeV m_{τ} = 1776.9 MeV
- e stable, μ and τ are unstable and decay through the weak interaction with lifetimes 2.2 μ s and 390 fs
- sensitivity of a_l to new physics at energy scale Λ goes like m_l^2 / Λ^2
- Muon more sensitive by large factor $(m_{\mu}/m_{e})^{2} \sim 43000$, but measurement limited by short lifetime
- Measurement for $\boldsymbol{\tau}$ lepton not practical at the moment

Key ingredients for measurement: polarized muons and muon spin analysis through decay electrons, both following from maximum P violation in weak interaction

- Muons produced at accelerators by pion decay are polarized
- Angle of energetic decay electrons are correlated with muon spin

Particles and Interactions in the Standard Model

Principle of muon g-2 measurement (CERN 1960-80)

M. Davier g-2 workshop IJCLab 19-05-2021

Time

Muon g-2 measurement (Brookhaven 1990-2006)

- A 24 GeV proton beam (AGS) incident on a target produces large number of pions that decay to muons
- The 3.1 GeV muon beam (relativistically enhanced lifetime of 64 µs) is injected into a 7.1 m radius ring with 1.4 T vertical magnetic field, which produces cyclotron motion matching the ring radius
- Electrostatic focusing of the beam is provided by a series of quadrupole lenses around the ring.

- Decay electrons (correlated with μ spin precession) counted vs. time in calorimeters inside ring ($\rightarrow \omega_a$)
- Precise measurement of ω_a and *B* allows to extract a_{μ}

Muon g-2 measurement (Brookhaven 1990-2006)

Observed positron rate in successive 100 µs periods ~150 polarisation rotations during measurement period

$$\omega_a \approx \frac{e}{m_\mu c} a_\mu B$$

obtained from time-dependent fit

$$N(t) = N_0 e^{-t/\gamma \tau} [1 - A \cdot \sin(\omega_a t - \phi)]$$

In blue: fit parameters

B field measured with Hall probes with RMN frequency as reference

 \Rightarrow a_µ obtained as ratio of 2 frequencies (double blind analysis)

Total systematic uncertainty on ω_a : 0.2–0.3 ppm, with largest contributors:

- *pileup* (~in-time arrival of two low-*E* electrons)
- muon losses
- coherent betatron oscillation (muon loss and CBO amplitude [frequency: 0.48 MHz, compared to ω_a: 0.23 MHz] are part of fit)
- calorimeter gain changes

 $a_{\mu} = 11\,659\,209.1\,(5.4)(3.3)\,\cdot 10^{-10}$

stat syst

Theoretical prediction for a_u

Theoretical prediction for a_u : QED

Known to 5 loops, good convergence, diagrams with internal electron loops enhanced:

$$a_{\mu}^{\text{QED}} = \frac{\alpha}{2\pi} + A_2 \left(\frac{\alpha}{\pi}\right)^2 + A_3 \left(\frac{\alpha}{\pi}\right)^3 + A_4 \left(\frac{\alpha}{\pi}\right)^4 + A_5 \left(\frac{\alpha}{\pi}\right)^5$$

 $A_2 A_3$ known analytically, $A_4 A_5$ obtained with Monte Carlo techniques, partially checked analytically for A_4 Aoyama, Hayakawa, Kinoshita, Nio (2012-2019)

Theoretical prediction for a_u : EW, hadronic light-by-light

• EW: one-loop + two-loop involving W, Z bosons (little sensitivity to Higgs boson mass)

 $a_{\mu}^{EW} = 153.6 (1.0) \times 10^{-11}$

shows level of sensitivity of a_{μ} to physics at large mass scales ~ O(0.1 TeV)

Precision at low energies ⇔ high energy frontier

• Hadronic light-by-light: α^3 contribution not computable by analytical QCD; so far only estimated by phenomenological models using intermediate particles; new approach partly using experimental data (2017); also first results from QCD lattice simulations (2019)

small contribution

$$a_{\mu}^{HLbL} = 94 (19) \times 10^{-11}$$

Theoretical prediction for a_u : Hadronic Vacuum Polarization

Dominant uncertainty for the theoretical prediction from HVP part which cannot be calculated from QCD (low mass scale), but one can use experimental data on $e^+e^- \rightarrow$ hadrons cross section

Hadronic Vacuum Polarization (DHMZ group)

- HVP has been for long and still now the largest contribution to the uncertainty of the a_u prediction in the SM
- Limited by the accuracy of e+e- experimental data
- DHMZ group (MD, Andreas Hoecker, Bogdan Malaescu, Zhiqing Zhang) involved since 1997
- Result used as reference for the Brookhaven experiment: comparison revealed a deficit in the prediction at ~ 2-3 σ level, hence our motivation to continue this effort toward a more precise prediction
- Main contributions to data treatment
 - Compilation of existing data for e+e- annihilation to obtain R as a sum of exclusive processes
 - Robust combination techniques taking into account all correlated uncertainties as function of energy, between exclusive channels, and between experiments
 - Correct for unmeasured processes using isospin constraints
 - > Determine energy regions where perturbative QCD calculations are safe (experience with τ physics at LEP)
- Launched a dedicated program of e+e- cross section measurements using the BABAR detector (Stanford) to get more precise data (2001-2014) with the new Initial State Radiation (ISR) method. A new phase is still underway.
- Same data and techniques used to study the running of α (energy) from α (0) to α (M_Z) \Rightarrow prediction for M_{Higgs}
- Double role as phenomenologists and experimenters

Measurements of $\sigma(e^+e^- \rightarrow hadrons)$

1. The scan method: e.g. CMD-2/3, SND at Novosibirsk

- ➤ Advantages:
 - ➤ Well defined Vs
 - > Good energy resolution $\sim 10^{-3} Vs$
- ➤ Disadvantages:
 - ➤ Energy gap between two scans
 - ➤ Low luminosity at low energies
 - \succ Limited Vs range of a given experiment
- 2. The ISR approach: e.g. BaBar, KLOE, BES, CLEOc
 - ➤ Advantages:
 - Continuous cross section measurement over a broad energy range down to threshold
 - ➤ large acceptance for hadrons if ISR detected at large angle
 - \succ σ(e⁺e⁻ → hadrons) may be measured over σ(e⁺e⁻ → μ⁺μ⁻) thus reducing some syst uncertainties
 - ➤ Disadvantages:
 - > Requires high luminosity to compensate higher order in α

s'=(1-x)/s $x=2E_{\gamma}/\sqrt{s}$

Combining cross section data (HVPTools)

- Combine experimental spectra with arbitrary point spacing / binning Properly propagate uncertainties and correlations
- Between measurements (data points/bins) of a given experiment (covariance matrices and/or detailed split of uncertainties)
- Between experiments (common systematic uncertainties, e.g. VP)
- Between different channels, e.g. luminosity, radiative corrections, some efficiencies
- Linear/quadratic splines to interpolate between the points/bins of each experiment
- Fluctuate data points taking into account correlations and re-do the splines for each (pseudo-)experiment
- each uncertainty fluctuated coherently for all the points/bins that it impacts
- eigenvector decomposition for (statistical & systematic) covariance matrices
- Integral(s) evaluated for nominal result and for each set of toy pseudoexperiments; uncertainty of integrals from RMS of results for all toys
- Pseudo-experiments also used to derive (statistical & systematic) covariance matrices of combined cross sections
 - \rightarrow Integral evaluation

Different energy regions for R(s)

- [$\pi^0\gamma$ threshold-1.8GeV]
- sum about 22→37 exclusive channels
- estimate unmeasured channels using isospin relations (now < 0.1%)

• [1.8-3.7] GeV

- good agreement between data and pQCD calculation
 - \rightarrow use 4-loop pQCD
- J/ψ, ψ(2s): Breit-Wigner integral
- [3.7-5] GeV
 - use data
- >5GeV

use 4-loop pQCD calculation

The dominant channel : $e^+e^- \rightarrow \pi^+ \pi^-(\gamma)$

Besides our team for the leading $\pi^+\pi^-$ and K⁺K⁻ cross sections, other BABAR groups have taken the lead to measure the rest of exclusive cross sections (altogether ~ 40 processes)

 \Rightarrow complete and precise reconstruction of R below 2 GeV

Combination : $e^+e^- \rightarrow \pi^+ \pi^-(\gamma)$

Figures from DHMZ, EPJC80 (2020) 241 [qu] TOF **KLOE 12** Cross section OLYA BESIII ☆ 10³ CMD ◊ SND • CMD-2 06 DM1 DM2 • CMD-2 03 10² ▲ KLOE 08 CLEO ⁴ KLOE 10 • BABAR Combined 10 $e^+e^- \rightarrow \pi^+\pi^-$ 10⁻¹ 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 2.2 2.4 1 √s [GeV]

Consistency between experimental data

- Latest dispersive evaluations rely on a rather complete set of measurements of $e^+e^- \rightarrow$ hadrons up to 6π , $\eta 4\pi$, KK 2π in all charge configurations, and a few more higher-multiplicity processes
- missing channels in the range [1.5-1.8] GeV are estimated to contribute < 0.1% using isospin symmetry
- discrepancies exist in the K⁺K⁻ channel on the ϕ (1020) (CMD-3 vs. CMD-2, SND, BABAR), taken into account
- A more significant discrepancy occurs in the $\pi^+\pi^-$ channel between the 2 most precise results (BABAR and KLOE)
- Taking into account the BABAR/KLOE disagreement in the combination, all experiments are in agreement within an enlarged combination uncertainty (0.7%), already a remarkable result given different experimental conditions: ISR (10.6 GeV BABAR, ~4 GeV BES CLEOc, 1.02 GeV KLOE), direct scan (CMD-2, SND)

The current R(s) (DHMZ19)

All contributions (DHMZ19)

Channel	$a_{\mu}^{ m had,\ LO}[10^{-10}]$	$\Delta lpha (m_Z^2) [10^{-4}]$	
$\pi^0\gamma$	$4.29 \pm 0.06 \pm 0.04 \pm 0.07$	$0.35 \pm 0.00 \pm 0.00 \pm 0.01$	
$\eta\gamma$	$0.65\pm 0.02\pm 0.01\pm 0.01$	$0.08\pm 0.00\pm 0.00\pm 0.00$	
$\pi^+\pi^-$	$507.80 \pm 0.83 \pm 3.19 \pm 0.60$	$34.49 \pm 0.06 \pm 0.20 \pm 0.04$	
$\pi^+\pi^-\pi^0$	$46.20 \pm 0.40 \pm 1.10 \pm 0.86$	$4.60 \pm 0.04 \pm 0.11 \pm 0.08$	
$2\pi^+2\pi^-$	$13.68 \pm 0.03 \pm 0.27 \pm 0.14$	$3.58 \pm 0.01 \pm 0.07 \pm 0.03$	
$\pi^+\pi^-2\pi^0$	$18.03 \pm 0.06 \pm 0.48 \pm 0.26$	$4.45 \pm 0.02 \pm 0.12 \pm 0.07$	10 014
$2\pi^+ 2\pi^- \pi^0 \ (\eta \ \text{excl.})$	$0.69 \pm 0.04 \pm 0.06 \pm 0.03$	$0.21\pm 0.01\pm 0.02\pm 0.01$	40 ex(
$\pi^+\pi^-3\pi^0~(\eta~{\rm excl.})$	$0.49 \pm 0.03 \pm 0.09 \pm 0.00$	$0.15\pm 0.01\pm 0.03\pm 0.00$	1.10
$3\pi^+3\pi^-$	$0.11\pm 0.00\pm 0.01\pm 0.00$	$0.04\pm 0.00\pm 0.00\pm 0.00$	(<1.8
$2\pi^+2\pi^-2\pi^0 \ (\eta \ \text{excl.})$	$0.71 \pm 0.06 \pm 0.07 \pm 0.14$	$0.25\pm 0.02\pm 0.02\pm 0.05$	•
$\pi^+\pi^-4\pi^0 \ (\eta \text{ excl., isospin})$	$0.08\pm 0.01\pm 0.08\pm 0.00$	$0.03\pm 0.00\pm 0.03\pm 0.00$	
$\eta\pi^+\pi^-$	$1.19 \pm 0.02 \pm 0.04 \pm 0.02$	$0.35\pm 0.01\pm 0.01\pm 0.01$	
$\eta\omega$	$0.35\pm 0.01\pm 0.02\pm 0.01$	$0.11\pm 0.00\pm 0.01\pm 0.00$	Estim
$\eta\pi^+\pi^-\pi^0(ext{non-}\omega,\phi)$	$0.34 \pm 0.03 \pm 0.03 \pm 0.04$	$0.12\pm 0.01\pm 0.01\pm 0.01$	
$\eta 2\pi^+ 2\pi^-$	$0.02 \pm 0.01 \pm 0.00 \pm 0.00$	$0.01\pm 0.00\pm 0.00\pm 0.00$	mode
$\omega\eta\pi^0$	$0.06 \pm 0.01 \pm 0.01 \pm 0.00$	$0.02 \pm 0.00 \pm 0.00 \pm 0.00$	mouc
$\omega\pi^0~(\omega ightarrow\pi^0\gamma)$	$0.94 \pm 0.01 \pm 0.03 \pm 0.00$	$0.20\pm 0.00\pm 0.01\pm 0.00$	const
$\omega(\pi\pi)^0~(\omega o\pi^0\gamma)$	$0.07 \pm 0.00 \pm 0.00 \pm 0.00$	$0.02\pm 0.00\pm 0.00\pm 0.00$	CONSC
$\omega \; ({ m non-} 3\pi, \pi\gamma, \eta\gamma)$	$0.04 \pm 0.00 \pm 0.00 \pm 0.00$	$0.00\pm 0.00\pm 0.00\pm 0.00$	noglic
K^+K^-	$23.08 \pm 0.20 \pm 0.33 \pm 0.21$	$3.35 \pm 0.03 \pm 0.05 \pm 0.03$	IIEBIIE
$K_S K_L$	$12.82\pm0.06\pm0.18\pm0.15$	$1.74 \pm 0.01 \pm 0.03 \pm 0.02$	
$\phi \; ({ m non-}K\overline{K}, 3\pi, \pi\gamma, \eta\gamma)$	$0.05\pm 0.00\pm 0.00\pm 0.00$	$0.01\pm 0.00\pm 0.00\pm 0.00$	
$K\overline{K}\pi$	$2.45 \pm 0.05 \pm 0.10 \pm 0.06$	$0.78 \pm 0.02 \pm 0.03 \pm 0.02$	
$K\overline{K}2\pi$	$0.85 \pm 0.02 \pm 0.05 \pm 0.01$	$0.30\pm 0.01\pm 0.02\pm 0.00$	
$K\overline{K}3\pi$ (estimate)	$-0.02\pm0.01\pm0.01\pm0.00$	$-0.01\pm0.00\pm0.00\pm0.00$	
$\eta\phi$	$0.33 \pm 0.01 \pm 0.01 \pm 0.00$	$0.11\pm 0.00\pm 0.00\pm 0.00$	
$\eta K \overline{K} \pmod{\phi}$	$0.01\pm 0.01\pm 0.01\pm 0.00$	$0.00 \pm 0.00 \pm 0.01 \pm 0.00$	
$\omega K \overline{K} (\omega \to \pi^0 \gamma)$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$	$0.00 \pm 0.00 \pm 0.00 \pm 0.00$	
$\omega 3\pi (\omega \rightarrow \pi^0 \gamma)^{\prime}$	$0.06\pm 0.01\pm 0.01\pm 0.01$	$0.02 \pm 0.00 \pm 0.00 \pm 0.00$	
7π ($3\pi^+3\pi^-\pi^0$ + estimate)	$0.02 \pm 0.00 \pm 0.01 \pm 0.00$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$	
J/ψ (BW integral)	6.28 ± 0.07	7.09 ± 0.08	
$\psi(2S)$ (BW integral)	1.57 ± 0.03	2.50 ± 0.04	
R data [3.7 - 5.0] GeV	$7.29 \pm 0.05 \pm 0.30 \pm 0.00$	$15.79 \pm 0.12 \pm 0.66 \pm 0.00$	
$R_{\rm QCD} [1.8 - 3.7 \text{ GeV}]_{uds}$	$33.45 \pm 0.28 \pm 0.65_{ m dual}$	$24.27 \pm 0.18 \pm 0.28_{ m dual}$	
$R_{\rm OCD} [5.0 - 9.3 \text{ GeV}]_{udsc}$	6.86 ± 0.04	34.89 ± 0.17	
$R_{\rm OCD} [9.3 - 12.0 \text{ GeV}]_{udsch}$	1.21 ± 0.01	15.56 ± 0.04	Table take
$R_{\rm QCD} [12.0 - 40.0 \text{ GeV}]_{udsch}$	1.64 ± 0.00	77.94 ± 0.12	
$R_{\rm QCD} [> 40.0 \text{ GeV}]_{udscb}$	0.16 ± 0.00	42.70 ± 0.06	DHMZ, EF
$R_{\rm QCD} [> 40.0 \ {\rm GeV}]_t$	0.00 ± 0.00	-0.72 ± 0.01	(2020) 24
Sum	$693.9 \pm 1.0 \pm 3.4 \pm 1.6 \pm 0.1 \pm 0.7 \text{QCD}_{ort}$	$275.42 \pm 0.15 \pm 0.72 \pm 0.23 \pm 0.09_{\psi} \pm 0.55_{\text{QCD}}$	

clusive channels GeV) evaluated

nation for missing es based on isospin raints becomes gible (0.016%)

en from PJC80 1

The g-2 theory initiative (2017-2020)

- By 2012, prediction using more precise e+e- data confirmed the discrepancy with the Brookhaven measurement, reaching ~ 3.5 σ
- In view of forthcoming results from the new g-2 direct experiment at Fermilab, a concerted effort was organized to try to produce the most reliable prediction ahead of time (blind to the new result)
- Organized 6 workshops followed by ~ 130 physicists (many lattice QCD theorists)
- Progress in hadronic LbL calculations with phenomenological and lattice methods, uncertainty reduced
- For HVP
 - > lattice groups very active, but could not produce a reliable and competitive result
 - the dispersive approach based on data was adopted: results of 2 groups used (DHMZ and KNT) with the DHMZ conservative approach of estimating uncertainties prevailing
- Comprehensive report (166 pages) ready early 2020 and published in Physics Reports, well before the Fermilab release

The g-2 theory initiative prediction (WP2020)

HVP

HLbL

The muon g-2 Fermilab experiment

- Brookhaven experiment limited by statistics, systematic effects well understood, could be improved with more intense (x 20) and pure muon beam at Fermilab
- Goal: reduce final uncertainty by a factor of 4 (over several years)
- Enlarged collaboration
- Experiment completely redesigned (beam instrumentation, detectors, electronics), only superconducting magnet kept and shipped

The muon g-2 Fermilab experiment: a few features

- B-field uniformity after careful magnet shimming
- Checked every 3 days with special trolley with probes
- Large number of fixed probes to interpolate shifts
- Real-time reconstruction of muon beam position/shape to obtain B-field as seen by the muons
- Possible using tracking system of electron detectors
- Calorimeters with PbF2 crystals read-out by SiPM's (reduce pile-up)

The muon g-2 Fermilab experiment: correcting systematic effects

- Large number of systematic studies to establish corrections and to estimate uncertainties
- Beam distortions/oscillations
- Muon losses
- E-field residual effect
- Different methods for ω_a determination
- B-field (ω_p)
- Several groups for each topics
- Double unblinding for ω_a and ω_p with secret offsets for clock frequencies
- precision dominated by statistics
- Guarantees progress for future analyses (so far only 6% of total data)

Quantity	Correction Terms	Uncertainty
	(ppb)	(ppb)
ω_a (statistical)	-	434
ω_a (systematic)	-	56
C_e	489	53
C_p	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$f_{calib}\langle \omega'_p(x,y,\phi) \times M(x,y,\phi) \rangle$	-	56
B_q	-17	92
B_k	-27	37
$\mu_{p}'(34.7^{\circ})/\mu_{e}$	-	10
m_{μ}/m_e	-	22
$g_e/2$	-	0
Total	-	462

434 ppb stat ⊕ 157 ppb syst error

The muon g-2 Fermilab experiment: the result

a_{μ} (Fermilab) = 116 592 040 (54) × 10⁻¹¹

- Agreement with Brookhaven value
- Precision comparable
- Excess / SM prediction increased to 4.2σ
- Caution about significance:
 - statistics-dominated measurement
 - prediction uncertainty limited by systematic effects (not Gaussian)
- Nevertheless, large discrepancy (the largest so far between measurement and SM anywhere)

60 years of muon g-2 measurements and theory predictions

Experiment	Beam	Measurement	$\delta a_{\mu}/a_{\mu}$	Required th. terms
Columbia-Nevis (57)	μ^+	g=2.00±0.10		g=2
Columbia-Nevis (59)	μ^+	0.001 13(+16)(-12)	12.4%	α/π
CERN 1 (61)	μ^+	0.001 145(22)	1.9%	α/π
CERN 1 (62)	μ^+	0.001 162(5)	0.43%	$(\alpha/\pi)^2$
CERN 2 (68)	μ^+	0.001 166 16(31)	265 ppm	$(\alpha/\pi)^3$
CERN 3 (75)	μ^{\pm}	0.001 165 895(27)	23 ppm	$(\alpha/\pi)^3$ + had
CERN 3 (79)	μ^{\pm}	0.001 165 911(11)	7.3 ppm	$(\alpha/\pi)^3$ + had
BNL E821 (00)	μ^+	0.001 165 919 1(59)	5 ppm	$(\alpha/\pi)^3$ + had
BNL E821 (01)	μ^+	0.001 165 920 2(16)	1.3 ppm	$(\alpha/\pi)^4$ + had + weak
BNL E821 (02)	μ^+	0.001 165 920 3(8)	0.7 ppm	$(\alpha/\pi)^4$ + had + weak + ?
BNL E821 (04)	μ^-	0.001 165 921 4(8)(3)	0.7 ppm	$(\alpha/\pi)^4$ + had + weak + ?
FNAL Run1 (21)	μ^+	0.001 165 920 40(54)	0.46 ppm	$(\alpha/\pi)^4$ + had + weak + ?

Summary and perspectives

- New measurement of the muon magnetic anomaly released at Fermilab
- Result in agreement with previous Brookhaven experiment
- A large effort was devoted to produce a reliable and conservative theoretical prediction within the Standard Model
- The Hadronic Vacuum Polarization contribution plays a very important role in the value and accuracy of the prediction
- The DHMZ group at Orsay has more than 20 years of experience using the mature dispersive approach based on experimental data on e+e- cross sections and in providing precise data with innovative methods
- Presently the confrontation theory/experiment indicates a missing contribution in the Standard Model at more than 4 σ
- Prospects for improving the direct measurement at Fermilab look good (reduction of uncertainty by a factor of 4 over the next 4 years)
- A new experiment is under preparation at JPARC in Japan using a completely different approach, thus allowing to crosscheck the traditional method

Backup slides

M. Davier g-2 workshop IJCLab 19-05-2021

List of DHMZ publications

1. ADH 1998, Eur.Phys.J.C 2 (1998) 123 [330 citations*] 2. DH 1998, Phys.Lett.B 419 (1998) 419 [219 citations] 3. DH 1998, Phys.Lett.B 435 (1998) 427 [292 citations] 4. DEHZ 2003, Eur.Phys.J.C 27 (2003) 497 [394 citations] 5. DEHZ 2003, Eur.Phys.J.C 31 (2003) 503 [430 citations] 6. DHMZ+ 2010, Eur.Phys.J.C 66 (2010) 127 [157 citations] 7. DHMYZ 2010, Eur.Phys.J.C 66 (2010) 1 [209 citations] 8. DHMZ 2011, Eur.Phys.J.C 71 (2011) 1515 [866 citations] 9. DHMZ 2017, Eur.Phys.J.C 77 (2017) 827 [259 citations] 10. DHMZ 2019, Eur.Phys.J.C 80 (2020) 241 [169 citations] 11. Theory initiative WP 2020, Phys.Rept. 887 (2020) 1 [171 citations] \rightarrow Total number of citations: ~3500

* Status of April 9, 2021

M. Davier g-2 workshop IJCLab 19-05-2021

The ISR method at BABAR

BABAR, operating on the high-luminosity asymmetric PEP II e+e- collider, was designed to study CP violation in the B-antiB system and led to the validation of the Cabibbo-Kobayashi-Maskawa matrix. The ISR program was a powerful by-product

- High energy ($E_{\gamma}^* > 3 \text{ GeV}$) detected at large angle
- Event topology: ISR photon back-to-back to hadrons \rightarrow high acceptance
- Final state can be hadronic or leptonic (QED) $\rightarrow \mu^+\mu^-\gamma(\gamma)$ to get ISR luminosity
- Continuous measurement from threshold to 3-5 GeV
 →reduces systematic uncertainties compared to multiple data sets with different colliders and detectors

KKbar+ π 's Channels

33

Contributions in the Region 1.8-3.7 GeV

pQCD evaluated from 4 loops + $O(\alpha_s^2)$ quark mass corrections Uncertainties: α_s , truncation, FOPT/CIPT, m_q M. Davier g-2 workshop IJCLab 19-05-2021

Contributions from Charm Resonance Region

 $7.29 \pm 0.05 \pm 0.30 \pm 0.00 \Rightarrow 1.05\%$ of $a_{\mu}^{had, LO}$

stat sys cor

M. Davier g-2 workshop IJCLab 19-05-2021

An Alternative Way Used to Evaluate HVP

Hadronic physics factorises in Spectral Functions:FundamentalIsospin symmetry connects I=1 e⁺e⁻ cross section to vector τ spectral funct iogsedient relating

$$\sigma^{(l=1)}\left[e^+e^- \to \pi^+\pi^-\right] = \frac{4\pi\alpha^2}{s}\upsilon\left[\tau^- \to \pi^-\pi^0\nu_\tau\right]$$

long distance (resonances) to short distance description (QCD)

$$\nu \left[\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}\right] \propto \frac{\mathsf{BR}\left[\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}\right]}{\mathsf{BR}\left[\tau^{-} \rightarrow e^{-} \overline{\nu_{e}} \nu_{\tau}\right]} \frac{1}{\mathsf{N}_{\pi\pi^{0}}} \frac{d\mathsf{N}_{\pi\pi^{0}}}{ds} \frac{m_{\tau}^{2}}{\left(1-s/m_{\tau}^{2}\right)^{2}\left(1+s/m_{\tau}^{2}\right)}$$

Branching fractions Mass spectrum Kinematic factors (PS)

Known Isospin Breaking Corrections

M. Davier g-2 workshop IJCLab 19-05-2021

Open Issue in the 2π Channel

Take into account all known isospin breaking corrections except for the $\rho - \gamma$ mixing correction

between e^+e^- and τ average

M. Davier g-2 workshop IJCLab 19-05-2021

Additional EFT Based $\rho - \gamma$ Mixing Correction

