Leading hadronic contribution to the muon magnetic moment from lattice QCD

Laurent Lellouch

CPT & IPhU Marseille CNRS & Aix-Marseille U.

Budapest-Marseille-Wuppertal collaboration [BMWc]

Borsanyi, Fodor, Guenther, Hoelbling, Katz, LL, Lippert, Miura, Szabo, Parato, Stokes, Toth, Torok, Varnhorst

Nature 593 (2021) 51, online 7 April 2021 \rightarrow BMWc '20 PRL 121 (2018) 022002 (Editors' Selection) \rightarrow BMWc '17 & Aoyama et al., Phys. Rept. 887 (2020) 1-166 \rightarrow WP '20

Context and motivation

Why so excited about the muon magnetic moment?

- Actually, interested in $a_{\ell} = (g_{\ell} 2)/2$
- Loop induced ⇒ sensitive to dofs that may be too heavy or too weakly coupled to be produced directly
- CP and flavor conserving, chirality flipping ⇒ complementary to: EDMs, *s* and *b* decays, LHC direct searches, ...
- As early as 1956, Berestetskii noted a_μ typically (m_μ/m_e)² ~ 40,000 times more sensitive to heavy dofs than a_e
 - $\Rightarrow a_{\mu}$ sensitive to possibly unknown, heavy dofs
- Despite $au_{\mu} \sim 2\,\mu {
 m s},\, a_{\mu}$ measured in 1960 [Garwin et al '60]

 \rightarrow measurements progressed in // with the development of the SM, each new experiment probing theory to a new level

• Early 2000s, BNL measured a_{μ} to 0.54 ppm: EW contribution seen at 3σ level \rightarrow But also excess over SM prediction $\sim 2\times$ EW contribution

Why so excited about the muon magnetic moment?

- Since then, persistent tension between measurement & SM $> 3.5\sigma$
- To decide on possible presence of BSM physics:
 - significant upgrade of BNL experiment @ FNAL w/ goal to reduce measurement error by ×4
 - important theoretical effort to improve SM prediction to same level
- ⇒ White Paper from the muon g 2 Theory Initiative posted on arXiv in June 2020 w/ reference SM prediction [Aoyama et al '20 = WP '20]
- ⇒ Presentation and publication on April 7 of FNAL's first results
 - \rightarrow tour de force measurement confirms BNL result w/ already improved precision
 - ightarrow reduces WA error to 0.35 ppm and increases tension w/ SM to 4.2 σ
 - Same day, Nature published our ab-initio calculation of hadronic vacuum polarization contribution to the SM prediction that brings it much closer to measurement of a_μ

Situation ca. June 2020

Fermilab plot, April 7 2021

Fermilab plot, April 7 2021, BMWc version

Standard model calculation of a_{μ}

At needed precision: all three interactions and most SM particles

$$\begin{aligned} a_{\mu}^{\text{SM}} &= a_{\mu}^{\text{OED}} + a_{\mu}^{\text{had}} + a_{\mu}^{\text{EW}} \\ &= O\left(\frac{\alpha}{2\pi}\right) + O\left(\left(\frac{\alpha}{\pi}\right)^2 \left(\frac{m_{\mu}}{M_{\rho}}\right)^2\right) + O\left(\left(\frac{e}{4\pi\sin\theta_W}\right)^2 \left(\frac{m_{\mu}}{M_W}\right)^2\right) \\ &= O\left(10^{-3}\right) + O\left(10^{-7}\right) + O\left(10^{-9}\right) \end{aligned}$$

SM prediction vs experiment on April 7, 2021 (v1)

SM contribution	$a_{\mu}^{\text{contrib.}} imes 10^{10}$	Ref.		
HVP LO (R-ratio)	692.8 ± 2.4	[KNT '19]		
	694.0 ± 4.0	[DHMZ '19]		
	692.3 ± 3.3	[CHHKS '19]		
	693.1 ± 4.0	[WP '20]		
HVP LO (lattice<2021)	711.6 ± 18.4	[WP '20]		
HVP NLO	-9.83 ± 0.07			
	[Kurz et al '14, Jegerlehner '16, WP '20]			
HVP NNLO	1.24 ± 0.01	[Kurz '14, Jeger. '16]		
HLbyL LO (pheno)	9.2 ± 1.9	[WP '20]		
HLbyL LO (lattice<2021)	$7.8 \pm 3.1 \pm 1.8$	[RBC '19]		
HLbyL LO (lattice 2021)	$10.7 \pm 1.1 \pm 0.9$	[Mainz '21]		
HLbyL LO (avg)	9.0 ± 1.7	[WP '20]		
HLbyL NLO (pheno)	0.2 ± 0.1	[WP '20]		
QED [5 loops]	11658471.8931 ± 0.0104	[Aoyama '19, WP '20]		
EW [2 loops]	15.36 ± 0.10	[Gnendiger '15, WP '20]		
HVP Tot. (R-ratio)	684.5 ± 4.0	[WP '20]		
HLbL Tot.	9.2 ± 1.8	[WP '20]		
SM [0.37 ppm]	11659181.0 ± 4.3	[WP '20]		
Exp [0.35 ppm]	11659206.1 ± 4.1	[BNL '06 + FNAL '21]		
Exp – SM	25.1 ± 5.9 [4.2 σ]			

SM prediction vs experiment on April 7, 2021 (v2)

SM contribution	$a_{\mu}^{\text{contrib.}} \times 10^{10}$	Ref.		
HVP LO (R-ratio)	692.8 ± 2.4	[KNT '19]		
	694.0 ± 4.0	[DHMZ '19]		
	692.3 ± 3.3	[CHHKS '19]		
	693.1 ± 4.0	[WP '20]		
HVP LO (lattice)	707.5 ± 5.5	[BMWc '20]		
HVP NLO	-9.83 ± 0.07			
	[Kurz et al '14, Jegerlehner '16, WP '20]			
HVP NNLO	1.24 ± 0.01	[Kurz '14, Jeger. '16]		
HLbyL LO (pheno)	9.2 ± 1.9	[WP '20]		
HLbyL LO (lattice<2021)	$7.8 \pm 3.1 \pm 1.8$	[RBC '19]		
HLbyL LO (lattice 2021)	$10.7 \pm 1.1 \pm 0.9$	[Mainz '21]		
HLbyL LO (avg)	9.0 ± 1.7	[WP '20]		
HLbyL NLO (pheno)	0.2 ± 0.1	[WP '20]		
QED [5 loops]	11658471.8931 ± 0.0104	[Aoyama '19, WP '20]		
EW [2 loops]	15.36 ± 0.10	[Gnendiger '15, WP '20]		
HVP Tot. (lat. + R-ratio)	698.9 ± 5.5	[WP '20, BMWc '20]		
HLbL Tot.	9.2 ± 1.8	[WP '20]		
SM [0.49 ppm]	11659195.4 ± 5.7	[WP '20 + BMWc '20]		
Exp [0.35 ppm]	11659206.1 ± 4.1	[BNL '06 + FNAL '21]		
Exp – SM	10.7 ± 7.0 [1.5 σ]			

Hadronic contributions to a_{μ} : quark and gluon loops

$$a_{\mu}^{\mathsf{exp}} - a_{\mu}^{\mathsf{QED}} - a_{\mu}^{\mathsf{EW}} = 718.9(4.1) imes 10^{-10} \stackrel{?}{=} a_{\mu}^{\mathsf{had}}$$

Clearly right order of magnitude:

$$\boldsymbol{a}_{\mu}^{\text{had}} = \boldsymbol{O}\left(\left(\frac{\alpha}{\pi}\right)^{2}\left(\frac{\boldsymbol{m}_{\mu}}{\boldsymbol{M}_{\rho}}\right)^{2}\right) = \boldsymbol{O}\left(10^{-7}\right)$$

(already Gourdin & de Rafael '69 found $a_{\mu}^{\rm had} = 650(50) imes 10^{-10}$)

Write

$$\pmb{a}_{\mu}^{\mathsf{had}} = \pmb{a}_{\mu}^{\mathsf{LO}\mathsf{-}\mathsf{HVP}} + \pmb{a}_{\mu}^{\mathsf{HO}\mathsf{-}\mathsf{HVP}} + \pmb{a}_{\mu}^{\mathsf{HLbyL}} + O\left(\left(rac{lpha}{\pi}
ight)^{4}
ight)$$

Hadronic contributions to a_{μ} : diagrams

A very brief introduction to lattice QCD

What is lattice QCD (LQCD)?

To describe matter w/ sub-% precision, QCD requires ≥ 104 numbers at every spacetime point

- $ightarrow\infty$ number of numbers in our continuous spacetime
- \rightarrow must temporarily "simplify" the theory to be able to calculate (regularization)
- \Rightarrow Lattice gauge theory \longrightarrow mathematically sound definition of NP QCD:
 - UV (& IR) cutoff → well defined path integral in Euclidean spacetime:

$$\begin{array}{ll} \langle O \rangle &=& \int \mathcal{D}U \mathcal{D}\bar{\psi} \mathcal{D}\psi \, e^{-S_G - \int \bar{\psi} D[M]\psi} \, O[U,\psi,\bar{\psi}] \\ &=& \int \mathcal{D}U \, e^{-S_G} \det(D[M]) \, O[U]_{\mathrm{Wick}} \end{array}$$

DUe^{-S_G} det(*D*[*M*]) ≥ 0 & finite # of dofs
 → evaluate numerically using stochastic methods

LQCD is QCD when $m_q \to m_q^{\text{ph}}$, $a \to 0$ (after renormalization), $L \to \infty$ (and stats $\to \infty$) HUGE conceptual and numerical ($O(10^9)$ dofs) challenge

Our "accelerators"

Such computations require some of the world's most powerful supercomputers

1 year on supercomputer ~ 100 000 years on laptop

In Germany, those of the Forschungszentrum Jülich, the Leibniz Supercomputing Centre (Murich), and the High Performance Computing Center (Stuttgart); in France, Turing and Jean Zay at the Institute for Development and Resources in Intensive Scientific Computing (IDRIS) of the CNRS, and Joliot-Curie at the Very Large Computing Centre (TGCC) of the CEA, by way of the French Large-scale Computing Infrastructure (GENCI).

· copyright Photothicque CNRS/Cyril Frésillor

Lattice QCD calculation of a_{μ}^{HVP}

HVP from LQCD: introduction

Consider in Euclidean spacetime, i.e. spacelike $q^2 = -Q^2 \le 0$ [Blum '02]

w/
$$J_{\mu} = \frac{2}{3} \bar{u} \gamma_{\mu} u - \frac{1}{3} \bar{d} \gamma_{\mu} d - \frac{1}{3} \bar{s} \gamma_{\mu} s + \frac{2}{3} \bar{c} \gamma_{\mu} c + \cdots$$

Then [Lautrup et al '69, Blum '02]

$$\begin{split} a_\ell^{\text{LO-HVP}} &= \alpha^2 \int_0^\infty \frac{dQ^2}{m_\ell^2} \, k(Q^2/m_\ell^2) \hat{\Pi}(Q^2) \\ \text{w/} \, \hat{\Pi}(Q^2) &\equiv \left[\Pi(Q^2) - \Pi(0) \right] \text{ and} \end{split}$$

$$k(r) = \left[r+2 - \sqrt{r(r+4)}\right]^2 / \sqrt{r(r+4)}$$

Integrand peaked for $Q \sim (m_\ell/2) \sim 50$ MeV for μ

However, $Q_{\min} \equiv rac{2\pi}{T} \sim 110$ MeV for lattice w/ $T \sim 11$ fm

Low- Q^2 challenges in finite volume (FV)

- A. Must subtract $\Pi_{\mu\nu}(Q = 0) \neq 0$ in FV that contaminates $\Pi(Q^2) \sim \Pi_{\mu\nu}(Q)/Q^2$ for $Q^2 \to 0$ w/ very large FV effects
- B. On-shell renormalization requires $\Pi(0)$ which is problematic (see above)
- C. Need $\hat{\Pi}(Q^2)$ interpolation due to $Q_{\min} = 2\pi/T \sim 135 \text{ MeV} > \frac{m_{\mu}}{2} \sim 50 \text{ MeV}$ for $T \sim 9 \text{ fm}$

↓

• Compute on $T \times L^3$ lattice in $N_f = 2 + 1 + 1$ QCD

$$\mathcal{C}_{TL}^{\mathrm{iso}}(t) = rac{a^3}{3}\sum_{i=1}^3\sum_{\vec{x}}\langle J_i(x)J_i(0)
angle$$

• Decompose $(C_{TL}^{l=1} = \frac{9}{10}C_{TL}^{ud})$ $C_{TL}^{iso}(t) = C_{TL}^{ud}(t) + C_{TL}^{s}(t) + C_{TL}^{c}(t) + C_{TL}^{disc}(t) = C_{TL}^{l=1}(t) + C_{TL}^{l=0}(t)$

• Define $\forall Q_0 \in \mathbb{R}$ [Bernecker et al '11, BMWc '13, Feng et al '13, Lehner '14, ...] (ad A, B, C) [see also Charles et al '17]

$$\hat{\Pi}_{TL}^{f}(Q^{2}) \equiv \Pi_{TL}^{f}(Q^{2}) - \Pi_{TL}^{f}(0) = \frac{1}{3} \sum_{i=1}^{3} \frac{\Pi_{ii,TL}^{f}(0) - \Pi_{ii,TL}^{f}(Q)}{Q^{2}} - \Pi_{TL}^{f}(0) = a \sum_{t=0}^{T-a} \operatorname{Re}\left[\frac{e^{iQt} - 1}{Q^{2}} + \frac{t^{2}}{2}\right] \operatorname{Re}C_{TL}^{f}(t)$$

Our lattice definition of $a_{\ell,f}^{\text{LO-HVP}}$

Combining everything, get $a_{\ell,f}^{\text{LO-HVP}}$ from $C_{TL}^{f}(t)$:

$$a_{\ell,f}^{\text{LO-HVP}}(Q^2 \le Q_{\max}^2) = \lim_{a \to 0, \ L \to \infty, T \to \infty} \alpha^2 \left(\frac{a}{m_\ell^2}\right) \sum_{t=0}^{T/2} K(tm_\ell, Q_{\max}^2/m_\ell^2) \operatorname{Re} C_{TL}^t(t)$$

where

$$\mathcal{K}(\tau, r_{\max}) = \int_0^{r_{\max}} dr \, k(r) \left(\tau^2 - \frac{4}{r} \sin^2 \frac{\tau \sqrt{r}}{2}\right)$$

Simulation challenges

- D. $\pi\pi$ contribution very important
- ightarrow have physically light π

E. Two types of contributions

where qd contributions are SU(3)f and Zweig suppressed but very challenging

- F. $\langle J_{\mu}^{ud}(x) J_{\nu}^{ud}(0) \rangle_{qc}$ & disc. have very poor signal at large $\sqrt{x^2}$ + need high-precision results
- \rightarrow many algorithmic improvements + very high statistics + rigorous bounds
 - G. Must control $\langle J_{\mu}(x)J_{\nu}(0)\rangle$ at $\sqrt{x^2} \gtrsim 2/m_{\mu} \rightarrow L = 6.1 \div 6.6 \text{ fm}, T = 8.6 \div 11.3 \text{ fm}$
 - H. Need controlled continuum limit \rightarrow have 6 a's: 0.134 \rightarrow 0.064 fm
 - → improve approach to continuum limit w/ phenomenological models (SRHO, SMLLGS) w/ 2-loop SU(2) S χ PT for systematic error

Simulation details: ad D - H

31 high-statistics simulations w/ $N_f = 2 + 1 + 1$ flavors of 4-stout staggered quarks:

- Bracketing physical m_{ud}, m_s, m_c
- 6 *a*'s: $0.134 \rightarrow 0.064 \text{ fm}$
- $L = 6.1 \div 6.6 \, \text{fm}, T = 8.6 \div 11.3 \, \text{fm}$
- Conserved EM current

β	a [fm]	$T \times L$	#conf
3.7000	0.1315	64×48	904
3.7500	0.1191	96×56	2072
3.7753	0.1116	84×56	1907
3.8400	0.0952	96×64	3139
3.9200	0.0787	128×80	4296
4.0126	0.0640	144×96	6980

For sea-quark QED corrections

β	a [fm]	$T \times L$	#conf
3.7000	0.1315	24×48	716
		48×64	300
3.7753	0.1116	28×56	887
3.8400	0.0952	32×64	4253

- State-of-the-art techniques:
 - EigCG
 - Low mode averaging [Neff et al '01, Giusti et al '04,...]
 - All mode averaging [Blum et al '13]
 - Solver truncation [Bali et al '09]

 \Rightarrow Over 25,000 gauge configurations

 \Rightarrow 10's of millions of measurements

Noise reduction: ad F-G

N/S in $C_L^{ud}(t)$ grows like $e^{(M_{\rho}-M_{\pi})t}$

- LMA: use exact (all-to-all) quark propagators in IR and stochastic in UV [Neff et al '01, Giusti et al '04]
- Decrease noise by replacing $C_L^{ud}(t)$ by average of rigorous upper/lower bounds above $t_c = 4 \text{ fm}$ [Lehner'16, BMWc'17]

$$0 \leq \textit{C}_{\textit{L}}^{\textit{ud}}(t) \leq \textit{C}_{\textit{L}}^{\textit{ud}}(t_{\textit{c}}) \, \textit{e}^{-\textit{E}_{2\pi}(t-t_{\textit{c}})}$$

 $\Rightarrow \times 5$ in precision: few pemil accuracy on each ensemble

More challenges

- I. Need $\hat{\Pi}(Q^2)$ for $Q^2 \in [0, +\infty[$, but $\frac{\pi}{a} \sim 9.7 \,\text{GeV}$ for $a \sim 0.064 \,\text{fm}$
 - \rightarrow match onto perturbation theory

 $\boldsymbol{a}^{\text{LO-HVP}}_{\ell,f} = \boldsymbol{a}^{\text{LO-HVP}}_{\ell,f}(\boldsymbol{Q} \leq \boldsymbol{Q}_{\text{max}}) + \gamma_{\ell}(\boldsymbol{Q}_{\text{max}}) \; \hat{\boldsymbol{\Pi}}^{f}(\boldsymbol{Q}^{2}_{\text{max}}) + \Delta^{\text{pert}} \boldsymbol{a}^{\text{LO-HVP}}_{\ell,f}(\boldsymbol{Q} > \boldsymbol{Q}_{\text{max}})$

using $O(\alpha_s^4)$ results from rhad package [Harlander et al '03]

- J. Include c quark for higher precision and good matching onto perturbation theory \rightarrow done
- K. Even in large volumes w/ $L \ge 6.1 \text{ fm} \& T \ge 8.7 \text{ fm}$, finite-volume (FV) effects significant

 \rightarrow 1-loop SU(2) χ PT [Aubin et al '16] suggests 2% even in our large volumes

- ightarrow leading source of systematic in all previous $a_{\mu}^{
 m LO-HVP}$ lattice calculations
- \rightarrow perform dedicated FV study w/ even larger volumes ($\sim 11 \text{ fm}$)⁴
- \rightarrow check and supplement w/ 2-loop χ PT [Bijnens et al '99, BMWc '20], $\rho \cdot \pi \gamma$ EFT (RHO) [Sakurai '60, Jegerlehner et al '11, Chakraborty et al '17], Gounaris-Sakurai inspired model (MLLGS) [GS '68, Lellouch & Lüscher '01, Meyer '11, Francis et al '13], Hansen-Patella (HP) [Hansen et al '19, '29]
- L. Our $N_f = 2 + 1 + 1$ calculation has $m_u = m_d$ and $\alpha = 0$
 - ⇒ missing effects compared to HVP from dispersion relations that are relevant at permil-level precision
 - \rightarrow perform lattice calculation of ALL $O(\alpha)$ and $O(\delta m = m_d m_u)$ effects on ALL quantities computed

Finite-volume corrections: ad K

Early estimate of these $e^{-LM_{\pi}}$ effects [Aubin et al [16]: 2% on $a_{\mu}^{\text{LO-HVP}}$ in our L = 6 simulations

- \rightarrow Perform dedicated lattice study
 - 4 very-high statistics $N_f = 2 + 1$, super-smeared (4HEX) simulations
 - Tuned so that staggered M_{π}^{HMS} brackets physical M_{π}
 - *L* up to 11 fm $(a \simeq 0.112 \text{ fm})!$

- \rightarrow Check w/ EFTs and models: dominated by long-distance $\pi\pi$ effects
 - NNLO (2-loop) χPT [Bijnens '99, Aubin et al '19, BMWc '20]
 - Meyer-Lellouch-Lüscher formalism w/ Gounaris-Sakurai model (MLLGS) [Lellouch & Lüscher '01,Meyer '11, Francis '13, Giusti et al '18, BMWc '20]
 - QFT relation to Compton scattering (HP) [Hansen et al '19-'20]
 - ρ-π-γ EFT (RHO) [Sakurai '60, Jegerlehner & Szafron '11, HPQCD '17]

[×10 ⁻¹⁰]	lattice	NLO	NNLO	MLLGS	HP	RHO
$a_{\mu}^{ ext{LO-HVP}}(ext{big}) - a_{\mu}^{ ext{LO-HVP}}(ext{ref})$	18.1(2.0)(1.4)	11.6	15.7	17.8	16.7	15.2

Model validation $\Rightarrow a_{\mu}^{\text{LO-HVP}}(\infty) - a_{\mu}^{\text{LO-HVP}}(\text{big}) = 0.6(3) \times 10^{-10}$ from NLO & NNLO χ PT

 $a_{\mu}^{\text{LO-HVP}}(\infty) - a_{\mu}^{\text{LO-HVP}}(\text{ref}) = 18.7(2.0)_{\text{stat}}(1.4)_{\text{cont}}(0.3)_{\text{big}}(0.6)_{\textit{l}=0}(0.1)_{\text{qed}}[2.5]$

Continuum extrapolation: ad H

Long-distance discretization effects in $a_{\mu,ud}^{\text{LO-HVP}}$ due to taste violations in $\pi\pi$ states [HPOCD 17]

Correct w/ SRHO [HPOCD '17] (consistent w/ SMLLGS [BMWc '20] and NNLO $S\chi$ PT at larger *t*)

- Parameters fixed w/ experiment
- Reproduces observed discretization effects well
- Corrections vanish in continuum limit
- 6 a's → full control over continuum limit

- Improves approach to continuum limit ⇒ reduced uncertainties
- Does NOT modify this limit ⇒ NO model dependence of result
- Vary time range of SRHO correction : *t* ≥ *t*_{sep} = 0.4, 0.7, 1.0, 1.3 fm
- Systematics: cuts on a; SRHO (t ≥ t_{sep}) & none (t < t_{sep}); SRHO or NNLO SχPT (t ≥ 1.3 fm); different window boundaries

Including isospin breaking on the lattice: ad I

$$S_{\text{QCD+QED}} = S_{\text{QCD}}^{\text{iso}} + \frac{1}{2} \delta m \int (\bar{d}d - \bar{u}u) + ie \int A_{\mu} J_{\mu}, \qquad J_{\mu} = \bar{q}Q\gamma_{\mu}q, \qquad \delta m = m_d - m_u$$

- Separation into isospin limit results and corrections requires an unambiguous definition of this limit (scheme and scale)
- Must be included not only in calculation of (J_μJ_ν) correlator BUT ALSO of all quantities used to fix quark masses and QCD scale

(1) operator insertion method [RM123 '12, '13, ...]

$$\begin{split} \langle \mathcal{O} \rangle_{\text{ACD+QED}} &= \langle \mathcal{O}_{\text{Wick}} \rangle_{G_{\mu}}^{\text{iso}} - \frac{\delta m}{2} \langle [\mathcal{O} \int (\bar{d}d - \bar{u}u)]_{\text{Wick}} \rangle_{G_{\mu}}^{\text{iso}} - \frac{e^{2}}{2} \langle [\mathcal{O} \int_{xy} J_{\mu}(x) D_{\mu\nu}(x - y) J_{\nu}(y)]_{\text{Wick}} \rangle_{G_{\mu}}^{\text{iso}} \\ &+ e^{2} \langle \langle \left[\mathcal{O} \partial_{e} \frac{\det D[G_{\mu}, eA_{\mu}]}{\det D[G_{\mu}, 0]} |_{e=0} \int_{x} J_{\mu}(x) A_{\mu}(x) - \frac{1}{2} \mathcal{O} \partial_{e}^{2} \frac{\det D[G_{\mu}, eA_{\mu}]}{\det D[G_{\mu}, 0]} |_{e=0} \right]_{\text{Wick}} \rangle_{G_{\mu}}^{\text{iso}} \end{split}$$

(2) direct method [Eichten et al '97, BMWc '14, ...]

Include $m_u \neq m_d$ and QED directly in calculation of observables and generation of gauge configurations

(3) combinations of (1) & (2) [BMWc '20]

We include ALL $O(e^2)$ and $O(\delta m)$ effects

For valence e^2 effects use easier (2), and for δm and e^2 sea effects, (1)

Yet more challenges

M. Need permil determination of QCD scale in our simulations

$$\rightarrow a_{\mu}^{\text{LO-HVP}} \sim m_{\mu}^2 \left(\frac{\Pi'(0)}{a^2}\right)_{\text{lat}} \times a^2 \Rightarrow \frac{\delta a_{\mu}^{\text{LO-HVP}}}{a_{\mu}^{\text{LO-HVP}}} \sim 2 \times \frac{\delta a}{a}$$

- \Rightarrow 2‰ calculation of Ω^- baryon mass
- \Rightarrow Calculate and use Wilson-flow scale [Lüscher '10, BMWc '12] $w_0 = 0.17236(29)(66)$ for defining isospin limit
- N. Need thorough and robust determination of statistical and systematic errors
 - Stat. err.: resampling methods
 - Syst. err.: extended frequentist approach [BMWc '08, '14]
 - Hundreds of thousands of different analyses of correlation functions
 - Weighted by AIC weight

$$\mathsf{AIC} \sim \exp\left[-\frac{1}{2}(\chi^2 + 2n_{\mathsf{par}} - n_{\mathsf{data}})\right]$$

- Simplify w/ importance sampling
- Use median of distribution for central values
- Use 16 ÷ 84% confidence interval to get total error

Summary of contributions to $a_{\mu}^{\text{LO-HVP}}$

Comparison and outlook

Comparison

- Consistent with other lattice results
- Total uncertainty is $\sim \div 3 \dots$
- ... and comparable to R-ratio and experiment
- Consistent w/ experiment @ 1.5σ ("no new physics" scenario) !
- 2.1σ larger than R-ratio average value [WP '20]

Fermilab plot, April 7 2021, BMWc version

What next?

- FNAL to reduce WA error by factor of 2.5 in coming years
- HLbL error must be reduced by factor of 1.5 ÷ 2
- Must reduce ours by factor of 4 !
- Will experiment still agree with our prediction ?
- Must be confirmed by other lattice groups
- If confirmed, must understand why lattice doesn't agree with R-ratio
- If disagreement can be fixed, combine LQCD and phenomenology to improve overall uncertainty [RBC/UKQCD '18]
- Important to pursue e⁺e⁻ → hadrons measurements [BaBar, CMD-3, Belle III, ...]
- μe → μe experiment MUonE very important for experimental crosscheck and complementarity w/ LQCD

• Important to build J-PARC g_{μ} – 2 and pursue a_e experiments

BACKUP

Do our results imply NP @ EW scale?

- Passera et al '08: first exploration of connection $a_{\mu}^{\text{LO-HVP}} \leftrightarrow \Delta_{\text{had}}^{(5)} \alpha(M_Z^2)$
- Crivellin et al '20, most aggressive scenario (see also Keshavarzi et al '20, Malaescu et al '20): our results suggest a 4.2 σ overshoot in $\Delta_{ba}^{(5)}\alpha(M_Z^2)$ compared to result of fit to EWPO
- Assume 2.8% relative deviation in R-ratio for all s (~ excess we found in $a_{\mu}^{\text{LO-HVP}}$)
- Hypothesis is not consistent w/ BMWc '17 nor new result

$a_{\mu}^{ ext{LO-HVP}}$ and $\Delta lpha_{ ext{had}}^{(5)}(M_Z^2)$ vs \sqrt{s}

