Hadronic Light-by-Light scattering in the anomalous magnetic moment of the muon

Harvey Meyer J. Gutenberg University Mainz

Virtual breakfast with (g - 2), GDR-Intensity Frontier & IJCLab Flavour GT , 19 May 2021

Cluster of Excellence

Established by the European Commission

Source of dominant uncertainties in SM prediction for $(g-2)_{\mu}$

- After announcement by Fermilab Muon (g-2) experiment and 2020 Theory White Paper: $a_{\mu}^{\text{sxp}} - a_{\mu}^{\text{SM}} = (251 \pm 59) \cdot 10^{-11}$
- 4.2 σ , with practically equal contributions to the error from theory and experiment.
- ▶ HVP (O(α^2), about $7000 \cdot 10^{-11}$) target accuracy: $\lesssim 0.5\%$
- ► HLbL (O(α^3), about $100 \cdot 10^{-11}$) target accuracy: $\lesssim 15\%$.

Hadronic vacuum polarisation (HVP)

Hadronic light-by-light scattering (HLbL)

Approaches to a_{μ}^{HLbL}

- 1. Model calculations: (the only approach until 2014)
 - based on pole- and loop-contributions of hadron resonances
- 2. **Dispersive representation:** the Bern approach has been worked out furthest.
 - identify and compute individual contributions
 - determine/constrain the required input (transition form factors, $\gamma^* \gamma^* \to \pi \pi$ amplitudes, . . .) dispersively
- 3. Experimental program: provide input for model & dispersive approach, e.g. $(\pi^0, \eta, \eta') \rightarrow \gamma \gamma^*$ at virtualities $Q^2 \lesssim 3 \,\text{GeV}^2$; active program at BES-III.
- 4. Lattice calculations:
 - RBC-UKQCD T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, Ch. Lehner,
 - Mainz N. Asmussen, E.-H. Chao, A. Gérardin, J. Green, J. Hudspith, HM, A. Nyffeler,

Models for a_{μ}^{HLbL}

Contribution	BPP	HKS, HK	KN	MV	BP, MdRR	PdRV	N, JN
π^0, η, η'	85±13	82.7±6.4	83±12	114±10	-	114±13	99 ± 16
axial vectors	2.5 ± 1.0	1.7±1.7	-	22±5	-	15 ± 10	22 ± 5
scalars	-6.8 ± 2.0	_	-	-	-	-7±7	-7 ± 2
π, K loops	-19 ± 13	-4.5 ± 8.1	-	-	-	-19 ± 19	$-19{\pm}13$
$\pi, K \text{ loops} + \text{subl. } N_C$	-	_	_	0±10	-	-	—
quark loops	21±3	9.7 ± 11.1	-	-	—	2.3 (c-quark)	21±3
Total	83±32	89.6±15.4	80±40	136 ± 25	110±40	105 ± 26	116 ± 39

BPP = Bijnens, Pallante, Prades '95, '96, '02; HKS = Hayakawa, Kinoshita, Sanda '95, '96; HK = Hayakawa, Kinoshita '98, '02; KN = Knecht, AN '02; MV = Melnikov, Vainshtein '04; BP = Bijnens, Prades '07; MdRR = Miller, de Rafael, Roberts '07; PdRV = Prades, de Rafael, Nanshtein '09; N = AN '09, JN = Jegerlehner, AN '09

Table from A. Nyffeler, PhiPsi 2017 conference

One further estimate: NB. much smaller axial-vector contribution

 $a_{\mu}^{\mathrm{HLbL}} = (103 \pm 29) \times 10^{-11}$ Jegerlehner 1809.07413

Wisdom gained from model calculations Prades, de Rafael, Vainshtein 0901.0306

heavy (charm) quark loop makes a small contribution

$$a_{\mu}^{\text{HLbL}} = (\frac{\alpha}{\pi})^3 N_c \mathcal{Q}_c^4 c_4 \frac{m_{\mu}^2}{m_c^2} + \dots, \qquad c_4 \approx 0.62.$$

• Light-quarks: (A) charged pion loop is negative, proportional to m_{π}^{-2} :

$$a_{\mu}^{\mathrm{HLbL}} = (\frac{\alpha}{\pi})^3 c_2 \frac{m_{\mu}^2}{m_{\pi}^2} + \dots, \qquad c_2 \approx -0.065.$$

(B) The neutral-pion exchange is positive, $\log^2(m_\pi^{-1})$ divergent: Knecht, Nyffeler, Perrottet, de Rafael PRL88 (2002) 071802

$$a_{\mu}^{\text{HLbL}} = \left(\frac{\alpha}{\pi}\right)^3 N_c \frac{m_{\mu}^2}{48\pi^2 (F_{\pi}^2/N_c)} \left[\log^2 \frac{m_{\rho}}{m_{\pi}} + \mathcal{O}\left(\log \frac{m_{\rho}}{m_{\pi}}\right) + \mathcal{O}(1)\right].$$

For real-world quark masses: using form factors for the mesons is essential, and resonances up to 1.5 GeV can still be relevant ⇒ medium-energy QCD.

Quark-line contraction topologies

First two classes of diagrams thought to be dominant, with a cancellation between them:

	Weight factor of:	fully connected	(2,2) topology
${ m SU(2)_f:}\ m_s=\infty$	isovector-meson exchange isoscalar-meson exchange	$34/9 \approx 3.78$ 0	$\begin{array}{c} -25/9 \approx -2.78 \\ 1 \end{array}$
$SU(3)_{\rm f}$: $m_s = m_{ud}$	octet-meson exchange singlet-meson exchange	3 0	-2 1

Large- N_c argument by J. Bijnens, 1608.01454; see also 1712.00421; Fig. by J. Green.

Dispersive methods: the Bern approach

Full HLbL tensor:

$$\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = i^3 \int_{x, y, z} e^{-i(q_1x + q_2y + q_3z)} \langle 0|T\{j_x^{\mu}j_y^{\nu}j_z^{\lambda}j_0^{\sigma}\}|0\rangle = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma}\Pi_i,$$

e.g. $T_1^{\mu\nu\lambda\sigma} = \epsilon^{\mu\nu\alpha\beta} \epsilon^{\lambda\sigma\gamma\delta} q_{1\alpha} q_{2\beta} q_{3\gamma} (q_1 + q_2 + q_3)_{\delta}$, where the 54 structures are really **seven** combined with **crossing symmetry**.

Computing $(g-2)_{\mu}$ using the projection technique (directly at q=0): $a_{\mu}^{\text{HLbL}} = -e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{\sum_{i=1}^{12} \hat{T}_{i}(q_{1}, q_{2}; p) \hat{\Pi}_{i}(q_{1}, q_{2}, -q_{1} - q_{2})}{q_{1}^{2}q_{2}^{2}(q_{1} + q_{2})^{2}[(p+q_{1})^{2} - m_{\mu}^{2}][(p-q_{2})^{2} - m_{\mu}^{2}]}$

with $\hat{\Pi}_i$ linear combinations of the Π_i .

Performing all "kinematic" integrals using Gegenbauer-polynomial technique after Wick rotation:

$$a_{\mu}^{\text{HLbL}} = \frac{2\alpha^3}{48\pi^2} \int_0^{\infty} dQ_1^4 \int_0^{\infty} dQ_2^4 \int_{-1}^{1} d\tau \sqrt{1-\tau^2} \sum_{i=1}^{12} T_i(Q_1, Q_2, \tau) \bar{\Pi}_i(Q_1, Q_2, \tau)$$

Colangelo, Hoferichter, Procura, Stoffer (2015)

Dispersive methods (II): sample results

► Dispersive analysis of the $\pi^0 \rightarrow \gamma^* \gamma^*$ transition form factor leads to $a_{\mu}^{\pi^0} = 62.6^{+3.0}_{-2.5} \cdot 10^{-11}$ Kubis et al. PRL121, 112002 (2018)

Charged-pion contributions: Colangelo et al. PRL118, 232001 (2017)

 $a_{\mu}^{\pi \text{ box}} + a_{\mu,J=0}^{\pi\pi,\pi-\text{poleLHC}} = -24(1) \cdot 10^{-11}$

Compilation of White Paper (2006.04822):

 $a_{\mu}^{\mathrm{HLbL}} = (89 \pm 19) \times 10^{-11}$

Omitting here the charm-quark contribution. Uncertainty dominated by axial-vector meson exchanges and short-distance contributions.

Direct lattice calculation of HLbL in $(g-2)_{\mu}$

At first, this was thought of as a QED+QCD calculation [pioneered in Hayakawa et al., hep-lat/0509016].

Today's viewpoint: the calculation is considered a QCD four-point Green's function, to be integrated over with a weighting kernel which contains all the QED parts.

RBC-UKQCD: calculation of $a_{\mu}^{\rm HLbL}$ using coordinate-space method in muon rest-frame; photon+muon propagators:

- either on the $L \times L \times L$ torus (QED_L) (1510.07100-present)
- or in infinite volume (QED $_{\infty}$) (1705.01067-present).

Mainz:

manifestly covariant QED_∞ coordinate-space approach, averaging over muon momentum using the Gegenbauer polynomial technique (1510.08384-present).

Analogy: hadronic vacuum polarization in x-space нм 1706.01139

QED kernel $H_{\mu\nu}(x)$

 a_{μ}^{hvp}

$$a^{\mathrm{hvp}}_{\mu} = \int d^4x \ H_{\mu\nu}(x) \left\langle j_{\mu}(x)j_{\nu}(0)\right\rangle_{\mathrm{QCD}},$$

$$j_{\mu} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s + \dots; \qquad H_{\mu\nu}(x) = -\delta_{\mu\nu}\mathcal{H}_{1}(|x|) + \frac{x_{\mu}x_{\nu}}{x^{2}}\mathcal{H}_{2}(|x|)$$

Kernel known in terms of Meijer's functions: $\mathcal{H}_i(|x|) = rac{8\alpha^2}{3m_\mu^2} f_i(m_\mu |x|)$ with

$$f_{2}(z) = \frac{G_{2,4}^{2,2}\left(z^{2} \mid \frac{7}{4}, \frac{7}{5}, \frac{4}{1}\right) - G_{2,4}^{2,2}\left(z^{2} \mid \frac{7}{4}, \frac{7}{5}, \frac{4}{5}\right)}{8\sqrt{\pi}z^{4}},$$

$$f_{1}(z) = f_{2}(z) - \frac{3}{16\sqrt{\pi}} \cdot \left[G_{3,5}^{2,3}\left(z^{2} \mid \frac{1}{2}, \frac{3}{3}, -2, 0, 0\right) - G_{3,5}^{2,3}\left(z^{2} \mid \frac{1}{2}, \frac{3}{2}, 2, 0\right)\right].$$

Coordinate-space approach to a_{μ}^{HLbL} , Mainz version

• $\bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y)$ computed in the continuum & infinite-volume

• no power-law finite-volume effects & only a 1d integral to sample the integrand in |y|.

[Asmussen, Gérardin, Green, HM, Nyffeler 1510.08384, 1609.08454]

 $a_{\mu}^{
m HLbL}$ at $m_{\pi}=m_K\simeq 415~{
m MeV}$

[Chao, Gérardin, Green, Hudspith, HM 2006.16224 (EPJC)]

$$a_{\mu}^{\text{hlbl,SU(3)}_{\text{f}}} = (65.4 \pm 4.9 \pm 6.6) \times 10^{-11}.$$

Guesstimating the result at physical quark masses: correct for π^0 exchange

$$a_{\mu}^{\text{hlbl},\text{SU}(3)_{\text{f}}} - a_{\mu}^{\text{hlbl},\pi^{0},\text{SU}(3)_{\text{f}}} + a_{\mu}^{\text{hlbl},\pi^{0},\text{phys}} = (104.1 \pm 9.1) \times 10^{-11}.$$

Estimate based on lattice QCD calculation of $\pi^0 \rightarrow \gamma^* \gamma^*$ transition form factor [Gérardin, HM, Nyffeler 1903.09471 (PRD)].

Connected integrand for $a_{\mu}^{\text{HLbL}} = \int_{0}^{\infty} d|y| f(|y|)$ vs. hadronic models

 $m_{\pi} = 200$ MeV, $m_K = 480$ MeV: (64³ × 128 lattice, a = 0.064 fm)

En-Hung Chao, Renwick Hudspith, Antoine Gérardin, Jeremy Green, HM, Konstantin Ottnad 2104.02632

Chiral, continuum, volume extrapolation

Overview table

Contribution	$Value \times 10^{11}$	
Light-quark fully-connected and $(2+2)$	107.4(11.3)(9.2)	
Strange-quark fully-connected and $(2+2)$	-0.6(2.0)	
(3+1)	0.0(0.6)	
(2+1+1)	0.0(0.3)	
(1 + 1 + 1 + 1)	0.0(0.1)	
Total	106.8(14.7)	

- error dominated by the statistical error and the continuum limit.
- all subleading contributions have been tightly constrained and shown to be negligible.

[Chao et al, 2104.02632]

Method based on QED_L pursued by RBC/UKQCD collaboration

- Photon and muon propagators computed with lattice action.
- Photon q = 0 spatial zero-mode removed 'by hand'.
- magnetic moment computed with formula of the type $\mu = \frac{1}{2} \int d^3 r \ r \times j$.
- Use domain-wall fermions practically at physical quark masses.
- Gluons: use gauge ensembles with two different actions
- \blacktriangleright Largest spatial lattice used: 64^3
- Extrapolation of the type

$$a_{\mu}^{\mathrm{HLbL}}(L,a) = a_{\mu} \Big(1 - \frac{b_2}{(m_{\mu}L)^2} + \frac{b_3}{(m_{\mu}L)^3} \Big) \Big(1 - c_1(m_{\mu}a)^2 + c_2(m_{\mu}a)^4 \Big).$$

[Blum et al. 1911.08123 (PRL)]

RBC/UKQCD (QED_L): final extrapolation [Blum et al. 1911.08123 (PRL)]

Conclusion on a_{μ}^{HLbL}

- Results from the Bern dispersive framework and from two independent lattice QCD calculations are in good agreement and have comparable uncertainties.
- It is now practically excluded that a^{HLbL}_μ can by itself explain the tension between the SM prediction and the experimental value of a_μ.
- Epilogue: a^{HLbL}_µ is a tale of many cancellations, both between the exchange of different mesons and also between Wick-contraction topologies in lattice QCD.

Backup Slides

The connected contribution

Cumulated $a_{\mu}^{\mathrm{HLbL}} = \int_{0}^{|y|_{\mathrm{max}}} d|y| f(|y|)$

Chiral, continuum, vol. extrapolation

The disconnected contribution

Cumulated $a_{\mu}^{\mathrm{HLbL}} = \int_{0}^{|y|_{\mathrm{max}}} d|y| f(|y|)$

Chiral, continuum, vol. extrapolation

Continuum tests: contribution of the π^0 and lepton loop to a_μ^{HLbL}

- > Even more freedom in choosing best lattice implementation than in HVP.
- ► The form of the |y|-integrand depends on the precise QED kernel used: can perform subtractions (Blum et al. 1705.01067; $\mathcal{L} \to \mathcal{L}^{(2)}$), impose Bose symmetries on $\overline{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y)$ or add a longitudinal piece $\partial_{\mu}^{(x)} f_{\rho;\nu\lambda\sigma}(x,y)$.

RBC/UKQCD (QED_L): cumulative contributions to a_{μ}^{HLbL}

Explicit form of the QED kernel

$$\bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y) = \sum_{A=\mathrm{I},\mathrm{II},\mathrm{III}} \mathcal{G}^{A}_{\delta[\rho\sigma]\mu\alpha\nu\beta\lambda} T^{(A)}_{\alpha\beta\delta}(x,y),$$

with e.g.

$$\mathcal{G}^{\mathrm{I}}_{\delta[\rho\sigma]\mu\alpha\nu\beta\lambda} \equiv \frac{1}{8} \mathrm{Tr}\Big\{\Big(\gamma_{\delta}[\gamma_{\rho},\gamma_{\sigma}] + 2(\delta_{\delta\sigma}\gamma_{\rho} - \delta_{\delta\rho}\gamma_{\sigma})\Big)\gamma_{\mu}\gamma_{\alpha}\gamma_{\nu}\gamma_{\beta}\gamma_{\lambda}\Big\},\$$

$$T^{(I)}_{\alpha\beta\delta}(x,y) = \partial^{(x)}_{\alpha}(\partial^{(x)}_{\beta} + \partial^{(y)}_{\beta})V_{\delta}(x,y),$$

$$T^{(II)}_{\alpha\beta\delta}(x,y) = m\partial^{(x)}_{\alpha}\Big(T_{\beta\delta}(x,y) + \frac{1}{4}\delta_{\beta\delta}S(x,y)\Big)$$

$$T^{(III)}_{\alpha\beta\delta}(x,y) = m(\partial^{(x)}_{\beta} + \partial^{(y)}_{\beta})\Big(T_{\alpha\delta}(x,y) + \frac{1}{4}\delta_{\alpha\delta}S(x,y)\Big),$$

$$\begin{split} \mathbf{S}(x,y) &= \int_{u} G_{m\gamma}(u-y) \Big\langle J(\hat{\epsilon},u) J(\hat{\epsilon},x-u) \Big\rangle_{\hat{\epsilon}}, \quad J(\hat{\epsilon},y) \equiv \int_{u} G_{0}(y-u) \, e^{m\hat{\epsilon}\cdot u} G_{m}(u) \\ V_{\delta}(x,y) &= x_{\delta} \overline{\mathfrak{g}}^{(1)}(|x|, \hat{x} \cdot \hat{y}, |y|) + y_{\delta} \overline{\mathfrak{g}}^{(2)}(|x|, \hat{x} \cdot \hat{y}, |y|), \\ T_{\alpha\beta}(x,y) &= (x_{\alpha} x_{\beta} - \frac{x^{2}}{4} \delta_{\alpha\beta}) \, \overline{\mathfrak{l}}^{(1)} + (y_{\alpha} y_{\beta} - \frac{y^{2}}{4} \delta_{\alpha\beta}) \, \overline{\mathfrak{l}}^{(2)} + (x_{\alpha} y_{\beta} + y_{\alpha} x_{\beta} - \frac{x \cdot y}{2} \delta_{\alpha\beta}) \, \overline{\mathfrak{l}}^{(3)}. \end{split}$$

The QED kernel $\bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y)$ is parametrized by six weight functions.