Simulation of TPC performance for the ALICE fixed target program

GDR-QCD Workshop, May 31 - June 4, 2021

Md Rihan Haque Warsaw University of Technology, Poland

This project is funded by the European Union's Horizon 2020 research and innovation programme (grant agreement No 824093).

The ALICE Experiment

J. Alme et al. / Nuclear Instruments and Methods in Physics Research A 622 (2010) 316-367

Main physics goals envisioned 2

- Understanding of the large-x gluon, antiquark and heavy-quark content in the nucleon and nucleus:
 - Structure of nucleon and nuclei at large-x poorly known.
 - Study possible gluon EMC effect in nuclei.
 - Existence of possible non-perturbative source of c/b quarks in the proton: useful for HE neutrino and CR physics.
- Study heavy-ion collisions between SPS and RHIC energies towards large rapidities:
 - Explore the longitudinal expansion of QGP formation.
 - Study collectivity in small systems with new probes thanks to high luminosity (heavy quarks).
 - Test factorization of CNM effects with Drell-Yan.

The Fixed Taget Position

- Favoured position from integration studies: b/w 4.7 4.8m (from IP) on A-side.
- Other position: outside L3 magnet but far from ALICE IP. Also additional detectors needed (vertex, tracking).

³Figure Credit: Laure Massacrier

▶ ★ 문 ▶ ★ 문 ▶ ... 문

The Fixed Taget Position

- Tracks from FT events would be shadowed by FT0/FV0.
- The FT drive mechanism and support system may cause shadowing for FOCAL Detector (not included in the sketch).

³Figure Credit: Felix Reidt

<ロ> < 団 > < 団 > < 臣 > < 臣 > 三 の < で 5/18

ALICE Acceptance in Fixed Taget mode

- The TPC would have coverage $1.35 < \eta < 2.51$
- The ITS coverage would be too small to do any physics.

⁴Figure Credit: Laure Massacrier

- Goals:

- Impact of large dip angles on TPC cluster finding and tracking (ongoing).
- Determining distortion corrections with Run 3 rates (future plan).
- Configuration:
- Simulation Software optimised for Run-2 data is used.
- \bullet Simulation Method: OCDB (Online Condition Database) \rightarrow Simulation \rightarrow Reconstruction.
- Collision System: p A at $\sqrt{s_{NN}} = 115$ GeV (p on W/Pb Target).
- Target Position (or IP) on beam axis = 480cm.
- $\bullet\,$ TPC acceptance (for IP = 480 cm)^3 is -1.38 $<\eta<$ -2.51
- Event Statistics: \sim 5000 p-W (central and Minimum Bias),
- HIJING event generator is used to simulate p-A collisions (Lab frame).
- Selected tracks: Charged Hadrons (π^{\pm} , K^{\pm} , p, \bar{p}).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- Specifications in Run-3:

- In Run-3 data taking, TPC would record data continuously. Therefore, it is important to differentiate b/w start time of a collider and FT event.
 - \rightarrow Can only be tested in Run-3 simulation framework (O2).
 - \rightarrow Alternate solution: Time shared data-taking (*i.e.* collider mode is paused during FT data taking period).
- Caveat: In the current simulation, we consider all events selected.
- TPC Space-Charge Distortions in Run-3 data taking rate would be different than Run-2. Distortion correction map depends with dip angles, drift lengths.
 → Would be evalulated for FT tracks using Run-3 Simulation Software (O2).
- Caveat: In the current simulation, TPC distortion maps of Run-2 have been used.

General QA: Secondary tracks and Acceptance (p-W MB)

- Left: Secondary Tracks allow to see detector structures.
- Right: Particles are boosted in the A-side (due to Fixed Target collision).
- Dotted line on ηp_T plot shows the TPC acceptance (-1.38 < η < -2.51).

- > - 4 同 > - 4 回 > - - - 回

General QA: η - p_T of MC and Reconstructed TPC tracks (p-W MB)

- Left: η - $p_{\rm T}$ of MC tracks (reconstructed) chosen within $-2.51 < \eta_{\rm MC} < -1.38$.
- Right: η - p_{T} from reconstructed track parameters \rightarrow equivalent to real data.
- Observation The η - $p_{\rm T}$ for reconstructed TPC tracks is smeared at low $p_{\rm T}$.

4 B K 4 B K

RZ-distribution of primary tracks with daughter (p-W MB)

- Left: MC primary tracks, Right: Reconstructed Tracks, Green Box: TPC active volume.
- Both Figures show origin point (in RZ plane) for 1st daughter from MC Primary track
- Relaxing the tracking cuts improves reconstruction for inclined tracks.
- Most of the tracks within TPC active volume are reconstructed.

Track Efficiency for Selected Events (p-W and p-Pb)

- Left: Track efficiency for Fixed Targed events (p on Tungsten).
- Right: Track efficiency in ALICE for pp collider events at $\sqrt{s_{NN}} = 2.76$ TeV.
- Caveat: Run-2 Simulation! To be re-evaluated using Run-3 Simulation Software (O2).

• • = • • = •

Vertex Finder Method for Fixed Targed Events

- 1. Select tracks with 475 < DCA $_{\rm z}$ < 485 cm and DCA $_{\rm R}$ < 5 cm (Distance of Closest Approach).
- 2. Find 3D crossing point (*p1, *p2) for all pairs (1-2,1-3,... 2-3,2-4... = N_{pair}).
- 3. Sum(Z) = Σ_{pair} ($w_1p1[2] + w_2p2[2]$), $w_1 = \sigma_{z,2}/(\sigma_{z,1} + \sigma_{z,2})$ and $w_2 = (1 w_1)$.
- 4. $V_z = Sum(Z)/N_{pair}$. Similar way for V_x , V_y .
- → Vertex reconstruction efficiency \approx 60% for central (<20%) events. →To be re-evaluated in Run-3 software.

▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 = • • • • • • • •

Summary:

- TPC Tracking efficiency is estimated for ALICE Fixed Target Program.
- 0 Tracking efficiency for Fixed Targed Event \approx 60% \rightarrow independent of centrality.
- Event reconstruction efficiency (with TPC only) is found to be $\approx 60\%$ for central events while 30% for MB p-W events \rightarrow without any additional Vertex detector.

- Caveats:

- Whether FIT Detector in Run-3 be used for FT events (for timing) \rightarrow To be evaluated in O2 software (with detector experts).

Next plans:

- Perform All simulations in ALICE Run-3 software (O2).
- Study Tracking performance (efficiency).
- Study Vertex/Event recontruction efficiency.
- Study Vertex position resolution with TPC only tracks.
- Evaulate TPC distortion map for inclined tracks.

Back Up

GDR-QCD Workshop, May 31 - June 4, 2021 Simulation of TPC for ALICE Fixed Target

<ロト < 回 ト < 臣 ト < 臣 ト 三 の < で 15/18

RZ-distribution of lost primary tracks with daughter (p-W MB)

- Only fewer tracks are not reconstructed inside TPC acceptance
 - \rightarrow May be very low length tracks (<70cm).
- Most of the lost tracks are outside TPC volume
 - \rightarrow lost in other Detector or Support structure.

Detector	Target location Z = 0	Target location Z = -135 mm	Target location Z = -2750 mm	Target location Z = -4700 mm
Upgraded ITS layer 0	$-2.50 < \eta_{lab} < 2.50$	$-0.02 < \eta_{lab} < 3.19$	5.45 < η _{lab} < 5.55	$6.01 < \eta_{lab} < 6.07$
Upgraded ITS layer 6	$-1.30 < \eta_{lab} < 1.30$	-1.13 < η _{lab} < 1.45	2.24 < η _{lab} < 2.78	2.91 < η _{lab} < 3.22
TPC	$-0.90 < \eta_{lab} < 0.90$	$-0.86 < \eta_{lab} < 0.94$	0.08 < η _{lab} < 1.50	0.78 < η _{lab} < 1.79
TPC (IROC only)	-1.50 < η _{lab} < 1.50	-1.45 < η _{lab} < 1.55	$0.17 < \eta_{lab} < 2.19$	1.35 < η _{lab} < 2.50
TOF	$-0.90 < \eta_{lab} < 0.90$	$-0.87 < \eta_{lab} < 0.93$	$-0.26 < \eta_{lab} < 1.34$	0.27 < η _{lab} < 1.58

<ロ > < 部 > < 書 > < 書 > 目 の へ で 17/18

ALICE Run-3/4 Design

