

Marco Santimaria (INFN-LNF) in collaboration with V.Carassiti, G.Ciullo, P. Di Nezza, P.Lenisa, S.Mariani, L.Pappalardo, E.Steffens

Joint workshop "GDR-QCD/QCD @ short distances and STRONG2020/PARTONS/FTE@LHC/NLOaccess" IJCLab, Orsay (Virtual), 02/06/2021



Istituto Nazionale di Fisica Nucleare











### Fixed-target physics at LHCb

- LHCb is a general-purpose forward spectrometer, fully instrumented in  $2 < \eta < 5$ , and optimised for c and b hadron detection
- Particle identification with RICH+CALO+MUON
- Excellent momentum resolution:

 $\sigma_p / p = 0.5 - 1.0\% \ (p \in [2,200] \text{ GeV})$ 

### Fixed-target kinematics:



pp/pA collisions, 7 TeV beam:

$$\sqrt{s} = \sqrt{2m_N E_p} = 115 \text{ GeV}$$
  
 $-3.0 \le y_{CMS} \le 0 \rightarrow 2 \le y_{lab} \le 5$ 

AA collisions, 2.76 TeV beam:  $\sqrt{s_{NN}} \simeq 72 \text{ GeV}$  $y_{CMS} = 0 \rightarrow y_{lab} = 4.3$ 

FTE@LHC: LHCspin

[JINST 3 (2008) S08005] [IJMPA 30 (2015)1530022]











### Timeline



- SMOG2 unpolarised gas storage cell boosts the LHCb fixed-target programme for the Run 3
- LHCb is the only experiment able to run in collider- and fixed-target mode, <u>simultaneously!</u>



- The SMOG program sets the basis for the development of a polarised gas target (PGT), that we aim to install during LS3
- LHCspin to take data from Run 4 (2028)  $\rightarrow$  [<u>The LHCspin project</u>]

[SMOG: see <u>Benjamin's talk</u>] [SMOG2: see <u>Pasquale's talk</u>]







### LHCspin: overview

Two main goals of the project:

- 1. Extend the broad physics program with unpolarised gases to Run 4 and to the HL-LHC phase
- 2. Bring spin physics at the LHC for the first time



### • Unique obserables:

- Large-x content of g,  $\overline{q}$  and heavy quarks in nucleons and nuclei
- Spin distributions of gluons inside unpolarised and polarised nucleons
- Heavy lon FT collisions at an energy in between SPS and RHIC

• Unique features:

- Broad and poorly explored kinematic range
- High luminosity, high resolution detectors
- Exploit proton and heavy ions beams
- Large variety of gas targets:  $H_2, D_2, He, N_2, O_2, Ne, Ar, Kr, Xe$  ( $\tau_{beam-gas}^{H_2}$  $\sim 2000 \text{ days})$
- Polarised gas targets:  $H^{\uparrow}, D^{\uparrow}$



### LHCspin: overview

- Complementarity is the key:
- 12 GeV JLab probing high-x, low  $Q^2$
- EIC measurements to focus on low-x, starting ~2035?
- higher  $Q^2$  reach with future EIC upgrade



• LHCspin to best cover mid to high x at intermediate  $Q^2$ 

 $\bullet$ 

• An example of SMOG data from 2016: 7.6  $nb^{-1}$  in just 87 h





5/19

## PDFs

high-x nucleon and nuclei structure is poorly known at all scales 

- Probe quark PDFs via W production
- Gluon PDFs are least known, accessed with heavy flavours: a strength point of LHCb!
- PDF knowledge is a basic ingredient for HEP computations (eg for FCC)

- The structure of nuclei departs from the simple sum of free p and n: EMC effect still to be understood
- $\rightarrow$  get more insight into the anti-shadowing region ( $x \sim 0.1$ )





### Impact on astrophysics

- $\overline{p}$  production on *pHe* collisions, first measurement from SMOG: [<u>PRL 121 (2018) 222001</u>]
- Helped the interpretation of DM annihalation



- Inputs for UHECR flux composition with *pHe*, *pO*, *pN* data
- <sup>16</sup>O beam foreseen for Run 3, would reproduce the actual processes:
- ${}^{16}O + p \rightarrow \overline{p} + X \text{ and } {}^{16}O + {}^{4}He \rightarrow \overline{p} + X \quad [\underline{CERN-LPCC-2018-07}]$

 heavy-flavour hadroproduction measurements needed to improve the prompt  $\nu_{\mu}$  flux prediction at high energy





# Multi-dimensional nucleon mapping

• Overcome the 1D view of the nucleon and investigate its spin structure: GPDs and TMDs



• red: vanish if no OAM [from B. Pasquini @ DIS2021]

### quark polarization

|                            | $T_x$                                         | $T_y$                                         | $\xi = 0$ |
|----------------------------|-----------------------------------------------|-----------------------------------------------|-----------|
| , <b>)</b>                 | $\langle S^q_x \ell^q_x  angle$               | $\langle S_y^q \ell_y^q  angle$               |           |
| $\langle \rangle$          | $\langle S_L \ell^q_L S^q_x \ell^q_x \rangle$ | $\langle S_L \ell^q_L S^q_y \ell^q_y \rangle$ |           |
| $\langle \ell^q_L \rangle$ | $\langle S_x S_x^q \rangle$                   | $\langle S_x \ell^q_x S^q_y \ell^q_y \rangle$ |           |
| $\langle \ell^q_L \rangle$ | $\langle S_y \ell^q_y S^q_x \ell^q_x \rangle$ | $\langle S_y S_y^q \rangle$                   |           |

$$\int d^2 \vec{b}_{-}$$

| TMD | U                | L        | T                     | $\vec{k}_{\perp} \times \vec{k}^{+} = xP^{-}$ |
|-----|------------------|----------|-----------------------|-----------------------------------------------|
| U   | $f_1$            |          | $h_1^\perp$           |                                               |
|     |                  | $g_{1L}$ | $h_{1L}^{\perp}$      |                                               |
| T   | $f_{1T}^{\perp}$ | $g_{1T}$ | $h_1, \ h_{1T}^\perp$ | 0+3D                                          |





### TMDs

• 3D momentum "tomography" of hadrons:



• To access the transverse motion of partons inside a polarised nucleon: measure TMDs via TSSAs at high  $x^{\uparrow}$ 

$$A_N = \frac{1}{P} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \qquad \qquad A_N \sim \frac{f_1^q(x_1, k_{T1}^2) \otimes f_{1T}^{\perp \bar{q}}(x_2, k_T)}{f_1^q(x_1, k_{T1}^2) \otimes f_1^{\bar{q}}(x_2, k_T^2)}$$

• Projections of polarised Drell-Yan data with 10 fb<sup>-1</sup>





• Sea-quark component accessed via  $W^{\pm}$ boson production, with  $\Delta A_N \sim 0.1 - 0.2$ 





The dominant of  $12B19_{120}$ 111108 112 quarkian quarkouting 109 113 114 12#20 115 116 121 as a brue as a brue pro-<del>112</del>  $\frac{113}{1}$ c, bbroad xirangerating scale notif  $M_T = \sqrt{M_T^2}$ more probess a gluen collider as Annungnthe  $\eta_c, \chi_c, \chi_b, \frac{12}{123}/\psi_t^2$  hose to average the second sec  $\overline{c}, \overline{b}$ 124 122 120 125  $\frac{121}{126}$  $\frac{122}{127}$ 177

att parto state with the set of the first of the set of





### More TMDs

- Plenty of observables with polarised DY: azimuthal asymmetries of the dilepton pair to probe TMDs
- $h_q^1$ : transversity  $\rightarrow$  difference in densities of quarks having T pol.  $\uparrow \uparrow$  or  $\uparrow \downarrow$  in T pol. nucleon
- $f_{1T}^{\perp q}$ : Sivers  $\rightarrow$  dependence on  $p_T$  orientation wrt T pol. nucleon
- $h_1^{\perp q}$ : Boer-Mulders  $\rightarrow$  dependence on  $p_T$  orientation wrt T pol. quark in unp. nucleon
- $h_{1T}^{\perp q}$ : pretzelosity  $\rightarrow$  dependence on  $p_T$  and T. pol of both T pol. quark and nucleon
- $f_1^q$ : unpolarised TMD, always present at the denominator



- polarised Drell-Yan to access quark TMDs
- gluon-induced asymmetries:  $h_1^{\perp g}$  never measured, can be accessed together with  $f_1^g$  (also unconstrained) in di- $J/\psi$  and  $\Upsilon$  production

```
[ArXiv:1807.00603]
```

$$\begin{split} A_{UU}^{cos2\phi} &\sim \frac{h_1^{\perp q}(x_1, k_{1T}^2) \otimes h_1^{\perp \bar{q}}(x_2, k_{2T}^2)}{f_1^q(x_1, k_{1T}^2) \otimes f_1^{\bar{q}}(x_2, k_{2T}^2)} \\ A_{UT}^{sin\phi_S} &\sim \frac{f_1^q(x_1, k_{1T}^2) \otimes f_{1T}^{\perp \bar{q}}(x_2, k_{2T}^2)}{f_1^q(x_1, k_{1T}^2) \otimes f_1^{\bar{q}}(x_2, k_{2T}^2)} \\ A_{UT}^{sin(2\phi+\phi_S)} &\sim \frac{h_1^{\perp q}(x_1, k_{1T}^2) \otimes h_{1T}^{\perp \bar{q}}(x_2, k_{2T}^2)}{f_1^q(x_1, k_{1T}^2) \otimes f_1^{\bar{q}}(x_2, k_{2T}^2)} \\ A_{UT}^{sin(2\phi-\phi_S)} &\sim \frac{h_1^{\perp q}(x_1, k_{1T}^2) \otimes h_1^{\bar{q}}(x_2, k_{2T}^2)}{f_1^q(x_1, k_{1T}^2) \otimes f_1^{\bar{q}}(x_2, k_{2T}^2)} \end{split}$$



### The spin puzzle & GPDs

TMDs  $\rightarrow$  intrinsic spin of the nucleon 



- OAM information via TMDs is only indirect: position and momentum correlations are needed
- Instead, quark OAM from GPD moments via Ji Sum Rule:

$$\frac{1}{2} = J^{q}(\mu) + J^{g}(\mu) = \frac{1}{2}\Delta\Sigma(\mu) + L_{z}^{q}(\mu) + J^{g}(\mu)$$
[PRL 78 (1997) 610-613]

- Experimental hints of large OAM contribution
- GPDs can be probed via UltraPeripheral Collisions (UPCs), dominated by EM interaction

Exclusive dilepton (TCS) or exclusive quarkonia production, the latter being sensitive to gluon GPDs



Marco Santima



## Heavy ion fixed-target collisions

- LHC delivers proton beam at 7 TeV and lead beam at 2.76 TeV: the storage cells technology allows for an easy target change
- Unique opportunities to probe nuclear matter over a new rapidity domain at  $\sqrt{s} = 72$  GeV
  - Hints for deconfinement at this energy: FT  $\bullet$ collisions to explore the transition region



Complement the RHIC Beam Energy Scan (BES) with a y scan



- Suppression of  $c\overline{c}$  bound states as QGP thermometer
- States with different binding energy  $\rightarrow$  different dissociation temperature
- LHCspin to access unique probes

[<u>IJMPA 28 (2013) 1340012</u>]



13/19

### Heavy ion fixed-target collisions

- Interesting topic joining heavy ions and polarisation: probing the dynamics of small systems
- Ultra-relativistic collisions of heavy nuclei (*Pb*) on transversely polarised deuterons  $(D^{\uparrow})$
- Deformation of  $D^{\uparrow}$  is reflected in the orientation of the  $\bullet$ generated fireball in the transverse plane



D polarised along  $\Phi_p$  , perpendicular to the beam

- $N_{W_3}$ 2218 16 14 12 10 5 6  ${{\overset{a}{\oplus}}}^{a}_{0.08}$  $^{208}$ Pb + d<sup>↑</sup>,  $\sqrt{s_{NN}}$ =72GeV 0.06 0.04 =00.02 \_=± <sup>-</sup> -0.02 -0.04 0.1 0.2 0.7 0.8 0.3 0.5 0.6 0.4 centrality
- Quantified by the ellipticity,  $\epsilon_2$  wrt  $\Phi_p$

Marco Santimaria



PRC

101

2020)

024901]

## LHCspin setup





... to create the next generation of fixed target polarisation techniques!



[<u>NIMA 540 (2005) 68-101</u>]





## The Polarised Gas Target

- Simulations show broad kinematic acceptance by exploiting the same position of the SMOG2 cell ullet
- Target cell of  $20 30 \times 1 \text{ cm}^2$ , slightly larger occupancy wrt SMOG2





## The Polarised Gas Target

• Inject both polarised and unpolarised gases



- Compact dipole magnet  $\rightarrow$  static transverse field
- Superconductive coils + iron fits the constraints
- B = 300 mT
- $\Delta B/B \simeq 10\%$ , suitable to avoid beam-induced depolarisation
- polarity inversion







### ABS and BRP R&D



- Reduce the size of both ABS and BRP to fit into the available space in the LHCb cavern
- A challenging R&D!
- No need for additional detectors to LHCb
- $P \simeq 85\%$  achieved at HERMES

```
Injected intensity of H-atoms:
6.5 \times 10^{16} \text{ s}^{-1}
```

Achievable Luminosity (HL-LHC):  $\sim 8 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ 



## Conclusions

| LHCI                                      | b LHCb Upgrade LHCb Upgrade LHCb Upgrade I   |      |       |                                                                                 |      |                                                  |      |      |      |      |                              |      |      |      |                                          |      |      |      |      |      |  |
|-------------------------------------------|----------------------------------------------|------|-------|---------------------------------------------------------------------------------|------|--------------------------------------------------|------|------|------|------|------------------------------|------|------|------|------------------------------------------|------|------|------|------|------|--|
| Run1 ·                                    | - Run2                                       |      |       |                                                                                 | Run3 |                                                  |      |      |      |      | Run4                         |      |      | Run5 |                                          |      |      | Run6 |      |      |  |
| ⊥ <sub>int</sub> =1                       | 10 fb <sup>-1</sup> LS2<br>Injector upgrades |      | rades | $\mathcal{L} = 2 \times 10^{33}$<br>$\mathscr{L}_{int} \sim 23 \text{ fb}^{-1}$ |      | LS3<br>HL-LHC -<br>ATLAS/CMS<br>Phase 2 upgrades |      |      |      | LS4  | £ = 1-2 x 10 <sup>34</sup> — |      |      | LS5  | →£ <sub>int</sub> ~ 300 fb <sup>-1</sup> |      |      |      |      |      |  |
| 2010                                      | 2018                                         | 2019 | 2020  | 2021                                                                            | 2022 | 2023                                             | 2024 | 2025 | 2026 | 2027 | 2028                         | 2029 | 2030 | 2031 | 2032                                     | 2033 | 2034 | 2035 | 2036 | 2040 |  |
| SMOG (2015) SMOG2 $L \downarrow C_{spin}$ |                                              |      |       |                                                                                 |      |                                                  |      |      |      |      |                              |      |      |      |                                          |      |      |      |      |      |  |

- The FT program at LHCb is active since Run 2, now enriched with the SMOG2 cell for Run 3
- LHCspin: natural evolution to bring spin-physics for the first time at LHC, exploiting the well-suited LHCb detector
- Nucleon spin and 3D structure investigation is worldwide pursued, yet very little is known, especially on the gluon sector
- The R&D calls for a new generation of polarised gas targets: challenging task but worth the effort!
- Very rich physics program, featuring new opportunities and unique probes
- Complementary to existing facilities and the future EIC



