

Chromodynamique quantique FTER

Heavy-flavour projections for pA and flow decorrelation predictions for PbA with ALICE-FT setup

Barbara Trzeciak

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

> Joint workshop "GDR-QCD@short distances and STRONG2020/PARTONS/FTE@LHC/NLOAccess"

> > May 31 – June 4 2021

2021

Visioconference

Fixed-target experiment at LHC

> Energy range

7 TeV proton beam on a fixed target

c.m.s. energy	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \mathrm{GeV}$	Rapidity shift:
Boost:	$\gamma = \sqrt{s} / (2m_N) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{ GeV}$		Rapidity shift:
Boost:	$\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

- \sqrt{s} in-between SPS and top RHIC

First of boost

- Entire forward hemisphere, $y_{cms} > 0$, within 1 degree

115 GeV

- Easy access to (very) large backward rapidity range, y_{cms} < 0
- And large parton momentum fraction $x_2 \rightarrow 1 \ (x_F \rightarrow -1)$

ALICE-FT setup

Beam splitting with bent crystal + internal target

- Crystal installed prior of the IP2, deviates the beam halo onto a target
- Target position: \sim 4.8 m from the IP on A-side
- Various target type: from Be to W •
- Target length from $\sim 100 \mu m$ to 1 cm
- Feasibility studies ongoing

У_{с.т.s.}

Acceptance vs target position

Acceptance vs target position for ALICE muon and TPC detectors

Open heavy-flavour projections

ALICE-FT Simulation setup

- Pythia 8 simulations, Monash 2013 tune, HardQCD, pp at 115 GeV
- → Total ccbar cross-section: 2.29 × 10⁻¹ mb (HELAConia)
- Target at z = -4.7 m from the nominal interaction point
- → 1 cm long solid targets, <u>C, Ti, W</u>, with a vertex detector close to the target
- → Rapidity coverage for D mesons in the ALICE central barrel: $-3.5 < y_{CMS} < -2.3$
- → $D^0 \rightarrow \pi^+ \text{ K}^-$, BR = 3.89%
- ➔ Efficiency x acceptance: 2%
- → Event plane Ψ_2 resolution for v_2 studies Res(Ψ_2) = 0.2
- Expected yearly integrated luminosities:

 $\begin{array}{l} \text{p-C: } \int L_{\text{p-C}} = 1.12 \text{ pb}^{\text{-1}} \\ \text{p-Ti: } \int L_{\text{p-Ti}} = 0.56 \text{ pb}^{\text{-1}} \\ \text{p-W: } \int L_{\text{p-W}} = 0.64 \text{ pb}^{\text{-1}} \end{array}$

 $\ensuremath{\, \rightarrow \,}$ Potential of measuring HF μ with ALICE muon arms closer to mid-rapidity

D^o meson yields in pA

- → Gluon PDFs and nuclear PDFs now well know at large x > 0.1
 - Expected yearly yields for $\underline{D^0} \rightarrow \pi^+ \underline{K^-}$ in pA collisions at 115 GeV
 - Precise measurements from $p_T = 0$ up to ~5 GeV/c
 - x₂ coverage: 0.15 0.55

B.Trzeciak, FTE@LHC, 3.6.2021

D° meson R_{AA} in pA

- PA collisions: Cold Nuclear Matter effects, possible collectivity in small systems
- Simultaneous measurements of D R_{AA} and v₂ in different systems

Similar precision expected in 10-20, 20-40% centrality intervals

- $D^0 \rightarrow \pi^+ K^-$ and c.c. in p-A collisions at 115 GeV
- Nuclear modification factor, $R_{CP} = N_{raw}^{central}/N_{raw}^{per}$
- Peripheral bin: 60-100%

$$N_{raw}^{D,cent} = < T_{pA} >^{cent} \times \sigma_{pp}^{D} \times N_{evt}^{cent}$$

Per 10%-wide centrality bin: $25*10^9$ events $30*10^9$ events $80*10^9$ events For 0-10% centrality $\int L_{p-C} \approx 92 \text{ nb}^{-1}$ $\int L_{p-Ti} \approx 43 \text{ nb}^{-1}$ $\int L_{p-W} \approx 47 \text{ nb}^{-1}$

D^0 meson v_2 in pA – 0-10%

- → pA collisions: Cold Nuclear Matter effects, possible collectivity in small systems
- Simultaneous measurements of D R_{AA} and v_2 in different systems

Azimuthal momentum space anisotropy of particle emission

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \Psi_{RP}))\right)$$
$$v_n^{obs} = \left\langle \cos\left[n\left(\phi - \Psi_n\right)\right] \right\rangle \qquad v_n = \frac{v_n^{obs}}{Res(\Psi_n)}$$

- Elliptic flow v_2 measurement using Event Plane method
- Event plane resolution $\text{Res}(\Psi_2) = 0.2$ enters to the uncertainties

$$\frac{dN}{d\phi} = A(1 + 2v_2\cos(2\Delta\phi))$$

Per 10%-wide centrality bin: $25*10^9$ events $30*10^9$ events $80*10^9$ events

D^{0} meson v_{2} in pA – 20-40%

- **B**FI
- PA collisions: Cold Nuclear Matter effects, possible collectivity in small systems
- \Rightarrow Simultaneous measurements of D $\rm R_{AA}$ and $\rm v_{2}$ in different systems

Azimuthal momentum space anisotropy of particle emission

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} (1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \Psi_{RP})))$$
$$v_n^{obs} = \left\langle \cos\left[n\left(\phi - \Psi_n\right)\right] \right\rangle \qquad v_n = \frac{v_n^{obs}}{Res(\Psi_n)}$$

- Elliptic flow v_2 measurement using Event Plane method
- Event plane resolution $\text{Res}(\Psi_2) = 0.2$ enters to the uncertainties

$$\frac{dN}{d\phi} = A(1 + 2v_2\cos(2\Delta\phi))$$

Per 10%-wide centrality bin: $25*10^9$ events $30*10^9$ events $80*10^9$ events

Anisotropic flow decorrelation

Jakub Cimerman, Iurii Karpenko, Boris Tomasik, BT arXiv: 2104.08022

Physics case: QGP

- → Study of the **quark-gluon plasma** between SPS and top RHIC energies of $\sqrt{s_{NN}} = 72$ GeV over broad rapidity range
- → Complete studies as a function of rapidity, centrality and system size → scan in μ_B complementary to RHIC BES programme

arXiv: 1807.00603

Physics case: QGP

- → Study of the **quark-gluon plasma** between SPS and top RHIC energies of $\sqrt{s_{NN}} = 72$ GeV over broad rapidity range
- → Complete studies as a function of rapidity, centrality and system size → scan in μ_B complementary to RHIC BES programme

→ v_n vs y → determination of η /s temperature dependence

Longitudinal flow decorrelation

EUFI

Longitudinal dynamics of heavy-ion collisions

- Modeling: full (3+1)D QGP evolution, source fluctuations
- Longitudinal fluctuations → EbE flow fluctuations in magnitude and direction
- Information about initial state
- Long. structure of flow → transport properties of QGP, Phys.Rev. C 98, 024913 (2018)

longitudinal direction was suggested in CGC model

OM17

Factorization ratio r

\rightarrow Factorization ratio r_n - measure of flow decorrelation

$$r_n(\eta) = \frac{\langle q_n(-\eta)q_n^*(\eta_{\rm ref})\rangle}{\langle q_n(\eta)q_n^*(\eta_{\rm ref})\rangle}$$

$$r_n(\eta) = \frac{\langle v_n(-\eta)v_n(\eta_{\text{ref}})\cos[n\left(\Psi_n(-\eta) - \Psi_n(\eta_{\text{ref}})\right)]\rangle}{\langle v_n(\eta)v_n(\eta_{\text{ref}})\cos[n\left(\Psi_n(\eta) - \Psi_n(\eta_{\text{ref}})\right)]\rangle}$$

- → Two effects:
 - flow magnitude decorrelation
 - flow angle decorrelation

Flow decorrelation factorization

- → **STAR**: r₂, r₃ measured at 200 and 27 GeV
 - Stronger decorrelation with decreasing energy

HC:

• CMS: Phys. Rev. C92 (3) (2015) 034911, ATLAS: Eur. Phys. J. C (2018) 78:142

M.Nie, QM19 QM18

Flow decorrelation factorization(2)

E CERTI

- → **STAR**: r₂, r₃ measured at 200 and 27 GeV
 - → Scaling of $r_2 vs \eta/y_{beam}$ not understood

Energy and system size studies of interest

M.Nie, QM19

Decorrelation with hydro model

>Event-by-event viscous hydrodynamic model

- Initial states: UrQMD and 3D GLISSANDO 2, Prog. Part. Nucl. Phys. 41, 255 (1998), Comput. Phys. Commun. 185, 1759 (2014), 1310.5475
- 3D viscous code: vHLLE, Phys. Rev. C 91, 064901 (2015), 1502.01978
- Hadronic rescatterings: UrQMD cascade
- Model tuned on basics observable from RHIC at 27 and 62 GeV and 200 GeV, Phys. Rev. C 103, 034902 (2021)

arXiv: 2104.08022 J.Cimerman, I.Karpenko, B.Tomasik, BT

Predictions for AFTER

REFI

- Event-by-event viscous hydrodynamic model
- → Pb-W, Pb-Ti, Pb-C at 72 GeV

Decorrelation predictions FT

EUF1

- Event-by-event viscous hydrodynamic model
- → Pb-W, Pb-Ti, Pb-C at 72 GeV

\rightarrow r_n definition

• Asymmetric system (CMS, Phys. Rev. C92 (3) (2015) 034911):

Strong decorrelation, increasing with decreasing system size
 Significant differences between different IS models

Decorrelation predictions FT (2)

Event-by-event viscous hydrodynamic model
Pb-W, Pb-Ti, Pb-C at 72 GeV, ALICE-like setup

→ r_n definition

• Fixed-target with two acceptance windows

$$r_n^{\rm FT}(\eta - \eta_C) = \frac{\langle q_n(-\eta + 2\eta_C)q_n^*(\eta_{\rm ref})\rangle}{\langle q_n(\eta)q_n^*(\eta_{\rm ref})\rangle}$$

- TPC: $-2.9 < \eta < -1.6$
- Muon det: $-1.0 < \eta_{
 m ref} < -0.5$

• Decorrelation around the center of the pseudo-rapidity bin:

 $\eta_C = -2.25$

Strong decorrelation, increasing with decreasing system size

Significant differences between different IS models

Summary

- Good precision for D⁰ meson measurements in pA systems
 - Yield, nuclear modification factor, v_2 down to low p_T
 - Statistical projections can be updated with more realistic ALICE detector performance figures – FT simulations within ALICE framework ongoing
- Longitudinal flow decorrelation
 - Great tool to discriminate between initial state models
 - Studies can be extended to pA systems (decorrelation measurements performed in p-Pb at LHC)
 - Doesn't required large statistics feasibility studies to be performed with ALICE simulation framework

Thank you!

A Fixed-Target Programme at the LHC: arXiv: 1807.00603

This work was supported by grant from The Czech Science Foundation, grant number: GJ20-16256Y

STAR r₂ vs models

→ STAR r₂ vs models

M.Nie, QM19

Acceptance in centre-of-mass y

- With7 TeV proton beam
 - $\Delta y = 4.8$

Physics motivations

- Advance our understanding of the high-x frontier in nucleons and nuclei (gluon and heavy-quark content) and its connection to astroparticle physics
- Unravel the spin of the nucleon: dynamics and spin distributions of quarks and gluons inside (un)polarised nucleons
- Studies of the quark-gluon plasma in heavy-ion collisions at a new energy domain down to the target-rapidity region

charm PDF (IC) with D

12

4

2

- Extremely good prospects for charm
 - Down to 0 $p_{\tau} \rightarrow$ total charm x-section
 - Wide rapidity coverage, $x_{F} \rightarrow -1$
 - High statistical precision in pp, p-A, A-A
 - With LHCb background well under control
 - Intrinsic charm modifies significantly D meson yields at large p_{τ} or forward rapidity
 - Large-x \rightarrow large charm PDF uncertainty
- uncertainty due to c(x) Perturbative via gluon splitting vs non-perturbative field relative from intrinsic charm
 - Impact on neutrino flux and cosmic-ray physics

arXiv: 1807.00603

gluon nPDF with heavy-flavour

- Constraining gluon nPDF with D, B and quarkonium measurements
- Almost unknown for x > 0.1; anti-shadowing, EMC effect ?
 - Reweigting analysis with pseudo data on $R_{_{\rm pA}}$
- Large reduction on the gluon nPDF uncertainty: unique constraints at large x and low scales
- Other nuclear effects in play: nuclear absorption, ...

QGP: Open Heavy-Flavour

- Open heavy-flavour in A-A \rightarrow heavy-quark energy loss in the medium
- Precise suppression measurements of charm and beauty vs rapidity and $p_T \rightarrow$ medium transport coefficient
- Useful reference for charmonium studies
- p-A: study collective-like effects in small systems
- Precise D meson v₂ measurement
 - Studies with different target type

