Drell-Yan process at intermediate energies with High-Energy Factorization and new unintegrated PDFs: pT spectra and angular distributions

M. A. Nefedov 1, V. A. Saleev ${ }^{1,2}$

3 June 2021,
GDR-QCD/QCD@short distances and STRONG/2020/PARTONS/FTE@LHC/NLOAccess joint workshop, IJClab, Orsay

[^0]The talk is based on:

- M.N., N. Nikolaev, V. Saleev, Phys.Rev. D87 (2013) 1, 014022
- M.N., V. Saleev, Phys.Lett. B790 (2019) 551; PoS DIS2019 (2019) 193; J.Phys.Conf.Ser. 1435 (2020) no.1, 012024].
- M.N., V. Saleev, Phys.Rev. D102 (2020) 114018

Outline:

- Parton Reggeization Approach to restore QED gauge-invariance of hadronic tensor at $q_{T} \neq 0$
- New unintegrated PDF
- Results for $p p$ and $p \bar{p}$ collisions
- Angular coefficients for $p p$-collisions with $\sqrt{S}=110 \mathrm{GeV}$

Introduction

Cross-section for the un-polarized Drell-Yan process $\left(S=\left(P_{1}+P_{2}\right)^{2}\right.$, $\left.Q^{2}=q^{2}=\left(k_{1}+k_{2}\right)^{2}\right)$:

$$
p\left(P_{1}\right)+p\left(P_{2}\right) \rightarrow \gamma^{\star}(q)+X \rightarrow l^{+}\left(k_{1}\right)+l^{-}\left(k_{2}\right)+X
$$

can be decomposed over helicity structure functions (HSFs) $F_{U U}^{(1, \ldots)}$ as follows ($x_{A, B}=Q e^{ \pm Y} / \sqrt{S}$):

$$
\begin{aligned}
\frac{d \sigma}{d x_{A} d x_{B} d^{2} \mathbf{q}_{T} d \Omega} & =\frac{\alpha^{2}}{4 Q^{2}}\left[F_{U U}^{(1)} \cdot\left(1+\cos ^{2} \theta\right)+F_{U U}^{(2)} \cdot\left(1-\cos ^{2} \theta\right)+\right. \\
& \left.+F_{U U}^{(\cos \phi)} \cdot \sin (2 \theta) \cos \phi+F_{U U}^{(\cos 2 \phi)} \cdot \sin ^{2} \theta \cos (2 \phi)\right]
\end{aligned}
$$

angular coefficients:

$$
\begin{gathered}
A_{0}=\frac{F_{U U}^{(2)}}{F_{U U}^{(1)}+F_{U U}^{(2)} / 2}, A_{1}=\frac{F_{U U}^{(\cos \phi)}}{F_{U U}^{(1)}+F_{U U}^{(2)} / 2}, A_{2}=\frac{2 F_{U U}^{(\cos 2 \phi)}}{F_{U U}^{(1)}+F_{U U}^{(2)} / 2} \\
\lambda=\frac{2-3 A_{0}}{2+A_{0}}, \mu=\frac{2 A_{1}}{2+A_{0}}, \nu=\frac{2 A_{2}}{2+A_{0}}
\end{gathered}
$$

TMD-factorization

The TMD-factorization for structure functions:

$$
\begin{aligned}
F_{U U}^{(1,2, \ldots)}\left(x_{A}, x_{B}, \mathbf{q}_{T}\right) & =\int d^{2} \mathbf{q}_{T 1} d^{2} \mathbf{q}_{T 2} \delta\left(\mathbf{q}_{T 1}+\mathbf{q}_{T 2}-\mathbf{q}_{T}\right) \times \\
& \times \mathcal{F}_{q}\left(x_{A}, \mathbf{q}_{T 1}\right) \mathcal{F}_{\bar{q}}\left(x_{B}, \mathbf{q}_{T 2}\right) \times f_{q \bar{q}}^{(1,2, \ldots)}\left(\mathbf{q}_{T 1}, \mathbf{q}_{T 2}\right) \\
& +Y_{U U}^{(1,2, \ldots)}
\end{aligned}
$$

- Factorization for "TMD-term" is proven at leading power in q_{T} / Q
- "Y-term" is responsible for large q_{T}-behavior
- Typically "Y-term" is computed in Collinear Parton Model (CPM)
- Does such a prescription correctly include all $O\left(q_{T} / Q\right)$ power corrections missing in "TMD-term"?
- Possible problem is related with (lack of commonly accepted) QED gauge-invariant definition of "TMD-term" at $q_{T} \neq 0$.

TMD Parton-model

Leptonic $\left(L_{\mu \nu}\right)$ and hadronic $\left(W_{\mu \nu}\right)$ tensors:

$$
d \sigma \sim L^{\mu \nu} W_{\mu \nu}
$$

Parton model for hadronic tensor:

Decomposition for quark correlatior (un-polarized protons, $P_{1}^{\mu}=P_{1}^{+} n_{-}^{\mu} / 2$):
where $f_{1}^{(q)}\left(x, \mathbf{q}_{T}\right)$ - TMD quark number density, $h_{1}^{(\perp q)}\left(x, \mathbf{q}_{T}\right)$ - Boer-Mulders function [D. Boer, P. Mulders, 1998].
Idea: decompose Dirac structure of quark correlator in the proton rest frame:

$$
\Phi_{\alpha \beta}=f_{1}^{\mu} \gamma_{\alpha \beta}^{\mu}+f_{2}^{\mu}\left(\gamma^{\mu} \gamma^{5}\right)_{\alpha \beta}+f_{3}^{\mu \nu}\left(i \sigma^{\mu \nu} \gamma^{5}\right)_{\alpha \beta}+f_{4} \delta_{\alpha \beta}+f_{5}\left(i \gamma^{5}\right)_{\alpha \beta}
$$

then apply boost: $f_{1}^{\mu} \sim q_{1}^{+} n_{-}^{\mu}, f_{3}^{\mu \nu} \sim q_{1}^{+} n_{-}^{\mu} k_{T 1}^{\nu}$, where
$k_{T 1}^{i}=\epsilon^{i j}\left(q_{T 1}^{j} / \Lambda\right)-\perp$ pseudo-vector, f_{2}, f_{4}, f_{5} - drop-out in un-polarized case.

TMD Parton-model

Problem: partonic tensor doesn't satisfy Ward identity at $q_{T} \neq 0$:

$$
q^{\mu} w_{\mu \nu}=O\left(q_{T} / Q\right)
$$

formally, GI is restored by $O\left(\left|\mathbf{q}_{T}\right| / Q\right)$-corrections to $w_{\mu \nu}$.

Full amplitude

In the full theory, not only t-channel ("Parton model") diagram but also diagrams with direct interaction of the photon with the proton and it's remnants are needed to restore gauge-invariance:

Is the contribution of non-Parton-model diagrams completely out of control or it can be factorized in some limit?
Let's consider the High-Energy limit:

$$
S \gg Q^{2}, q_{T}^{2}
$$

Spectator model

Let's consider the question of factorization in a concrete field-theoretic model, which includes (massless) proton fields, quarks, gluons and spectator fields of mass M_{s}. Protons, quarks and spectators carry $U(1)$ charge.
Let's consider the process:

$$
\bar{p}\left(P_{1}\right)+p\left(P_{2}\right) \rightarrow \gamma^{\star}(q)+s\left(P_{1}^{\prime}\right)+s\left(P_{2}^{\prime}\right) .
$$

Most interesting diagrams in High-Energy limit (+ 2 similar diags.):

Crossed-diagrams are doubly-suppressed:

Fadin-Sherman vertex

In the leading power in $\sqrt{S}=P_{1}^{+}=P_{2}^{-}$, diags. 2 and 3 give:
$\mathcal{D}_{2}^{\mu} \propto e_{p} \bar{v}\left(P_{1}\right) \gamma^{\mu} \frac{\hat{P}_{1}-\hat{q}}{\left(P_{1}-q\right)^{2}} \simeq e_{p} \bar{v}\left(P_{1}\right) \frac{P_{1}^{+} \gamma^{\mu} \hat{n}_{-}}{2\left(-P_{1}^{+} q^{-}\right)}=\bar{v}\left(P_{1}\right) \frac{i \hat{q}_{1}}{q_{1}^{2}}\left[i e_{p} \frac{\hat{q}_{1} n_{-}^{\mu}}{q_{-}}\right]$,
$\mathcal{D}_{3}^{\mu} \propto e_{s} \frac{\left(2 P_{1}+2 q_{2}-q\right)^{\mu}}{\left(P_{1}+q_{2}\right)^{2}} \bar{v}\left(P_{1}\right) \simeq \frac{P_{1}^{+} n_{-}^{\mu}}{P_{1}^{+} q^{-}} \bar{v}\left(P_{1}\right)=\bar{v}\left(P_{1}\right) \frac{i \hat{q}_{1}}{q_{1}^{2}}\left[-i e_{s} \frac{\hat{q}_{1} n_{-}^{\mu}}{q_{-}}\right]$.
Collecting the contributions of all diagrams one obtains

$$
\mathcal{M}_{\mu} \simeq\left(-\lambda_{s p q}^{2}\right) \bar{v}\left(P_{1}\right) \frac{i \hat{q}_{1}}{q_{1}^{2}}\left(-i \Gamma_{\mu}\left(q_{1}, q_{2}\right)\right) \frac{-i \hat{q}_{2}}{q_{2}^{2}} u\left(P_{2}\right)
$$

where Fadin-Sherman vertex [Fadin, Sherman, 1976]:

$$
\Gamma_{\mu}\left(q_{1}, q_{2}\right)=e_{q} \gamma_{\mu}-\left(e_{p}-e_{s}\right) \hat{q}_{1} \frac{n_{\mu}^{-}}{q_{-}}-\left(e_{p}-e_{s}\right) \hat{q}_{2} \frac{n_{\mu}^{+}}{q_{+}},
$$

depends only on e_{q}, since $e_{p}-e_{s}=e_{q}$ and it satisfies Ward identity:

$$
q^{\mu} \Gamma_{\mu}\left(q_{1}, q_{2}\right)=0 \text {. }
$$

Helicity structure functions in PRA

The partonic tensor for number-density contribution in above-proposed Parton Reggeization Approach (PRA) reads:

$$
w_{\mu \nu}^{\mathrm{PRA}}=\frac{1}{4} \operatorname{tr}\left[\left(\frac{q_{2}^{-}}{2} \hat{n}^{+}\right) \Gamma_{\mu}\left(q_{1}, q_{2}\right)\left(\frac{q_{1}^{+}}{2} \hat{n}^{-}\right) \Gamma_{\nu}\left(q_{1}, q_{2}\right)\right]
$$

and it leads to the following partonic HSFs:

$$
\begin{gathered}
f_{\mathrm{PRA}}^{(1)}=1+\frac{q_{T}^{2}}{2 Q^{2}}, f_{\mathrm{PRA}}^{(2)}=\frac{\left(\mathbf{q}_{T 1}-\mathbf{q}_{T 2}\right)^{2}}{Q^{2}}, \\
f_{\mathrm{PRA}}^{(\cos \phi)}=\sqrt{\frac{Q^{2}}{q_{T}^{2}}} \frac{\mathbf{q}_{T 1}^{2}-\mathbf{q}_{T 2}^{2}}{Q^{2}}, f_{\mathrm{PRA}}^{(\cos 2 \phi)}=\frac{q_{T}^{2}}{2 Q^{2}} .
\end{gathered}
$$

Analysis by Ian Balitsky

In recent papers by I. Balitsky and A. Tarasov, the LO PRA-asatz for parity-even, number-density part of the hadronic tensor was confirmed in a very general analysis in a framework of rapidity factorization. Figures form hep-ph/2012.01588:

The calculation takes into account first q_{T} / Q-suppressed contribution to the hadronic tensor in leading $1 / N_{c}$-approximation at LO in α_{s} for "central" fields but to all orders in "forward" and "backward" fields.

Further perturbative tests: two-Reggeon contribution

In QCD Boer-Mulders function is generated by additional gluon exchanges between spectators and hard process (see e.g. [D. Boer, et.al., 2017]).
In PRA this corresponds to diagrams with more than one Reggeon in t-channel:

Diagrams for the central blob:

These diagrams should be computed to check if the contribution factorizes as we propose, especially at $q_{T} \sim Q$ (outside of TMD limit). Work in progress...

New unintegrated PDF with exact normalization

- Was derived in [M.N., Saleev, 2020] from Modified-MRK approxiamtion for QCD matrix elements with additional real emissions, which smoothly interpolates between Multi-Regge and Collinear limits.
- Exactly satisfies the UPDF normalization condition for small- x and $x \sim 1$:

$$
\int_{0}^{\mu^{2}} d \mathbf{q}_{T}^{2} \Phi_{i}\left(x, \mathbf{q}_{T}^{2}, \mu^{2}\right)=\tilde{f}_{i}\left(x, \mu^{2}\right)
$$

where $\tilde{f}_{i}\left(x, \mu^{2}\right)=x f_{i}\left(x, \mu^{2}\right)$, to all orders in α_{s} for DGLAP-splitting functions $P_{i j}(z)$.

- We have checked, that for $\mathbf{q}_{T}^{2} \ll Q^{2}$, our UPDF is consistent with Collins-Soper-Sterman formula up to Next-to-Leading Logarithmic approximation.

The perturbative shower part

Applicable for $t=\mathbf{q}_{T}^{2}>t_{0}, t_{0} \sim 1 \mathrm{GeV}:$

$$
\begin{aligned}
& \Phi_{i}^{\text {(pert. shower) }}\left(x, t, \mu^{2}\right) \\
& =\frac{\alpha_{s}(t)}{2 \pi} \frac{T_{i}\left(t, \mu^{2}, x\right)}{t} \sum_{j=q, \bar{q}, g} \int_{x}^{1} d z P_{i j}(z) \tilde{f}_{j}\left(\frac{x}{z}, t\right) \theta\left(\Delta\left(t, \mu^{2}\right)-z\right),
\end{aligned}
$$

with $\Delta\left(t, \mu^{2}\right)=\sqrt{\mu^{2}} /\left(\sqrt{\mu^{2}}+\sqrt{t}\right)$ - rapidity-ordering [KMRW] cutoff, Sudakov formfactor:

$$
\begin{aligned}
T_{i}\left(t, \mu^{2}, x\right) & =\exp \left[-\int_{t}^{\mu^{2}} \frac{d t^{\prime}}{t^{\prime}} \frac{\alpha_{s}\left(t^{\prime}\right)}{2 \pi}\left(\tau_{i}\left(t^{\prime}, \mu^{2}\right)+\Delta \tau_{i}\left(t^{\prime}, \mu^{2}, x\right)\right)\right], \text { where: } \\
\tau_{i}\left(t, \mu^{2}\right) & =\sum_{j} \int_{0}^{1} d z z P_{j i}(z) \theta\left(\Delta\left(t, \mu^{2}\right)-z\right), \\
\Delta \tau_{i}\left(t, \mu^{2}, x\right) & =\sum_{j} \int_{0}^{1} d z \theta\left(z-\Delta\left(t, \mu^{2}\right)\right)\left[z P_{j i}(z)-\frac{\tilde{f}_{j}\left(\frac{x}{z}, t\right)}{\tilde{f}_{i}(x, t)} P_{i j}(z) \theta(z-x)\right] .
\end{aligned}
$$

Non-perturbative shower and intrinsic q_{T} parts

Applicable for $t<t_{0}$:

$$
\Phi_{i}^{(\text {non-pert. shower })}\left(x, t, \mu^{2}\right)=A t^{\alpha}\left(t_{1}-t\right)
$$

where parameters A, t_{1} and α are determined by normalization, continuity and smoothness of UPDF at $t=t_{0}$.
Finally the shower-part is convoluted over \mathbf{q}_{T} with Gaussian distribution of intrinsic \mathbf{q}_{T} of a parton with some width σ_{T} :

$$
\Phi_{i}\left(x, \mathbf{q}_{T}^{2}, \mu^{2}\right)=\int \frac{d^{2} \mathbf{k}_{T}}{\pi \sigma_{T i}^{2}} e^{-\frac{\mathbf{k}_{T}^{2}}{\sigma_{T i}^{2}}} \Phi_{i}^{(\text {shower })}\left(x,\left(\mathbf{q}_{T}-\mathbf{k}_{T}\right)^{2}, \mu^{2}\right)
$$

Parameters σ_{T} where taken equal for all quark flavors. The best-fit value $\sigma_{T}^{\text {(best fit) }} \simeq 0.35 \mathrm{GeV}$ was found in a global fit of normalized $d \sigma / d \mathbf{q}_{T}^{2} / \sigma$ cross-sections for \sqrt{S} from 20 up to 200 GeV .

Fit results

Dataset	Observable	$\sqrt{S}(\mathrm{GeV})$	$Q(\mathrm{GeV})$	$\frac{\sigma(\text { data })}{\sigma(\text { theory })}[+/-$ scale-uncert.] ($+/-$ exp. uncert.)
E-288	$q^{0} d \sigma / d^{3} q$	19.4	4-5	$1.54[+0.63 /-0.40](\pm 0.20)$
			5-6	$1.50[+0.70 /-0.45](\pm 0.18)$
			6-7	$1.43[+0.73 /-0.46](\pm 0.18)$
			7-8	$1.22[+0.70 /-0.43](\pm 0.25)$
			8-9	$1.03[+0.64 /-0.04](\pm 0.35)$
		23.7	4-5	$1.64[+0.56 /-0.35](\pm 0.22)$
			5-6	$1.46[+0.57 /-0.36](\pm 0.14)$
			6-7	$1.47[+0.64 /-0.42](\pm 0.17)$
			7-8	$1.47[+0.70 /-0.44](\pm 0.20)$
			8-9	$1.43[+0.71 /-0.45](\pm 0.29)$
		27.4	5-6	$1.57[+0.55 /-0.33](\pm 0.13)$
			6-7	$1.47[+0.57 /-0.36](\pm 0.07)$
			7-8	$1.44[+0.60 /-0.38](\pm 0.08)$
			8-9	$1.35[+0.60 /-0.38](\pm 0.10)$
E-605	$q^{0} d \sigma / d^{3} q$	38.8	7-8	$1.50[+0.55 /-0.31](\pm 0.18)$
			8-9	$1.42[+0.56 /-0.33](\pm 0.10)$
			10.5-11.5	$1.33[+0.60 /-0.38](\pm 0.11)$
			11.5-13.5	$1.40[+0.67 /-0.40](\pm 0.11)$
			13.5-18	$1.14[+0.60 /-0.36](\pm 0.17)$
R-209	$d \sigma / d \mathbf{q}_{T}^{2}$	62	5-8	1.63[+0.40/-0.18](± 0.29)
PHENIX	$q^{0} d \sigma / d^{3} q$	200	4.8-8.2	$1.50[+0.17 /-0.10](\pm 0.44)$
CDF-1999	$d \sigma / d \mid \mathbf{q}_{T}$	1800	66-116	$2.07[+0.23 /-0.12](\pm 0.11)$
ATLAS-2019	$d \sigma / d\left\|\mathbf{q}_{T}\right\|$	13000	66-116	$1.71[+0.07 /-0.06](\pm 0.04)$

Fit results

UPDF generated from MSTW-2008 LO collinear PDF.

Fit results

UPDF generated from MSTW-2008 LO collinear PDF.

Fit results

UPDF generated from MSTW-2008 LO collinear PDF.

Z-boson \mathbf{q}_{T} at $\sqrt{S}=1.8 \mathrm{TeV}$

The LO (generated form MSTW-2008 LO PDF) and NLO (genetrated from CT-18 NLO PDF using NLO $P_{i j}$ in the shower formula and $\left.\sigma_{T}=0.35 \mathrm{GeV}\right)$.

$\mathbf{q}_{\mathrm{T}}, \mathbf{G e V}$
$20 / 28$

Z-boson \mathbf{q}_{T} at $\sqrt{S}=13 \mathrm{TeV}$

The LO (generated form MSTW-2008 LO PDF) and NLO
(genetrated from CT-18 NLO PDF using NLO $P_{i j}$ in the shower formula and $\sigma_{T}=0.35 \mathrm{GeV}$).

Angular distributions at $\sqrt{S}=8 \mathrm{TeV}$ and $Q=M_{Z}$

$$
\begin{aligned}
& \frac{d \sigma}{d Q d \mathbf{q}_{T}^{2} d y d \Omega_{l}}=\frac{3}{16 \pi} \frac{d \sigma}{d Q d \mathbf{q}_{T}^{2} d y}\left\{\left(1+\cos ^{2} \theta_{l}\right)+\frac{A_{0}}{2}\left(1-3 \cos ^{2} \theta_{l}\right)\right. \\
& +A_{1} \sin 2 \theta_{l} \cos \phi_{l}+\frac{A_{2}}{2} \sin ^{2} \theta_{l} \sin 2 \phi_{l}+A_{3} \sin \theta_{l} \cos \phi_{l}+A_{4} \cos \theta_{l} \\
& \left.+A_{5} \sin ^{2} \theta_{l} \sin 2 \phi_{l}+A_{6} \sin 2 \theta_{l} \sin \phi_{l}+A_{7} \sin \theta_{l} \sin \phi_{l}\right\}
\end{aligned}
$$

Left panel: A_{0}, A_{2}. Right panel: A_{1}, A_{3}, A_{4}.

Strong violation of Lam-Tung relation at $Q=M_{Z}$

Lam-Tung relation: $A_{0}=A_{2}$ or $\lambda+2 \nu=1$, valid at LO and NLO in CPM. Left: figure from ATLAS paper [JHEP 08, 159 (2016)], right: figure form NuSea paper [PRL,102:182001,2009]

HEF with initial-state Reggeized gluons

Figures from [L.Motyka, et.al., Phys.Rev., D95, 114025 (2017)]:

So there is a strong dependence of $A_{0}-A_{2}$ on the gluon UPDF and spin-structure of the amplitude with additional emissions.

Description of NuSea data $(\sqrt{S}=39 \mathrm{GeV}$, $4.5<Q<15 \mathrm{GeV})$ on angular coefficients

Description with "old" KMRW formula [M.N., Nikolaev, Saleev, 2013]:

Description of NuSea data $(\sqrt{S}=39 \mathrm{GeV}$, $4.5<Q<15 \mathrm{GeV})$ on angular coefficients

Description with "new" UPDF (genetrated from CT-18 NLO PDF using NLO $P_{i j}$ in the shower formula and $\sigma_{T}=0.35 \mathrm{GeV}$):

$26 / 28$

What will change at LHCb-FT?

Comparison of NuSea ($\sqrt{S}=39 \mathrm{GeV}$, $4.5<Q<15 \mathrm{GeV}, 0<x_{F}<0.8$) and possible FT-LHCb ($\sqrt{S}=110$ $\mathrm{GeV})$ kinematics:

$27 / 28$

Conclusions

- High-energy factorization for Drell-Yan is applicable for $S \gg Q^{2}, \mathbf{q}_{T}^{2}$, more general than TMD factorization $\left(\mathbf{q}_{T}^{2} \ll Q^{2}\right)$.
- PRA leads to gauge-invariant hadronic tensor for $\mathbf{q}_{T}^{2} \sim Q^{2}$
- LO PRA calculation with new KMRW-type UPDF with exact normalization nicely describes shapes of normalized $d \sigma / d\left|\mathbf{q}_{T}\right|$-distributions for nucleon-nucleon and pion-nucleon collisions
- Description of angular coefficients for Z-boson requires NLO in PRA
- NLO in PRA is needed to reduce theory uncertainty and describe absolute (not normalized) cross-sections
- Large violation of Lam-Tung relation for Z-boson is still a puzzle
- New measurements of Drell-Yan q_{T}-spectrum and angular coefficients are needed at $\sqrt{S} \sim 100 \mathrm{GeV}$, as well as at high energies for $Q \neq M_{Z}$.

Thank you for your attention!

[^0]: ${ }^{1}$ Samara National Research University, Samara, Russia
 ${ }^{2}$ Bogolyubov Laboratory for Theoretical Physics, JINR, Dubna, Russia

