The POWHEG BOX event generator:
 Recent Developments

Emanuele Re

LAPTh Annecy

Joint Workshop: GDR QCD: "QCD@short distances" \& STRONG 2020: "Fixed target experiments at LHC", "3DPartons", "NLOAccess"

4 June 2021

- The POWHEG method in a nutshell
- The POWHEG BOX event generator
- Recent results on NNLO+PS matching
- Conclusion and Outlook
- NLO+PS: match fixed-order computation at NLO in QCD with Parton Showers
- Problem: overlapping regions

- NLO+PS: match fixed-order computation at NLO in QCD with Parton Showers
- Problem: overlapping regions

- NLO+PS: match fixed-order computation at NLO in QCD with Parton Showers
- Problem: overlapping regions

- NLO+PS: match fixed-order computation at NLO in QCD with Parton Showers
- Problem: overlapping regions

- NLO+PS is well understood, general solutions applicable to virtually any process: MC@NLO and POWHEG
[Frixione-Webber '03, Nason '04]
- Other approaches exist, e.g. KrkNLO, Vincia

$$
d \sigma_{\mathrm{POW}}=d \Phi_{n} \quad \bar{B}\left(\Phi_{n}\right) \quad\left\{\Delta\left(\Phi_{n} ; k_{\mathrm{T}}^{\mathrm{min}}\right)+\Delta\left(\Phi_{n} ; k_{\mathrm{T}}\right) \frac{\alpha_{s}}{2 \pi} \frac{R\left(\Phi_{n}, \Phi_{r}\right)}{B\left(\Phi_{n}\right)} d \Phi_{r}\right\}
$$

[+ p_{T}-vetoing subsequent emissions, to avoid double-counting]

$$
\begin{gathered}
B\left(\Phi_{n}\right) \Rightarrow \bar{B}\left(\Phi_{n}\right)=B\left(\Phi_{n}\right)+\frac{\alpha_{s}}{2 \pi}\left[V\left(\Phi_{n}\right)+\int R\left(\Phi_{n+1}\right) d \Phi_{r}\right] \\
d \sigma_{\mathrm{POW}}=d \Phi_{n} \quad \bar{B}\left(\Phi_{n}\right) \quad\left\{\Delta\left(\Phi_{n} ; k_{\mathrm{T}}^{\mathrm{min}}\right)+\Delta\left(\Phi_{n} ; k_{\mathrm{T}}\right) \frac{\alpha_{s}}{2 \pi} \frac{R\left(\Phi_{n}, \Phi_{r}\right)}{B\left(\Phi_{n}\right)} d \Phi_{r}\right\}
\end{gathered}
$$

[+ p_{T}-vetoing subsequent emissions, to avoid double-counting]

$$
\begin{aligned}
& B\left(\Phi_{n}\right) \Rightarrow \bar{B}\left(\Phi_{n}\right)=B\left(\Phi_{n}\right)+\frac{\alpha_{s}}{2 \pi}\left[V\left(\Phi_{n}\right)+\int R\left(\Phi_{n+1}\right) d \Phi_{r}\right] \\
& d \sigma_{\mathrm{POW}}=d \Phi_{n} \quad \bar{B}\left(\Phi_{n}\right) \quad\left\{\Delta\left(\Phi_{n} ; k_{\mathrm{T}}^{\mathrm{min}}\right)+\Delta\left(\Phi_{n} ; k_{\mathrm{T}}\right) \frac{\alpha_{s}}{2 \pi} \frac{R\left(\Phi_{n}, \Phi_{r}\right)}{B\left(\Phi_{n}\right)} d \Phi_{r}\right\}
\end{aligned}
$$

[$+p_{\mathrm{T}}$-vetoing subsqquent emissions, to avoid double-counting]

$$
\begin{aligned}
& {\left[\rightarrow 6^{6} \leftrightarrow\left[t_{\mathrm{m}}, t\right) \Rightarrow \Delta\left(\Phi_{n} ; k_{\mathrm{T}}\right)=\exp \left\{-\frac{\alpha_{s}}{2 \pi} \int \frac{R\left(\Phi_{n}, \Phi_{r}^{\prime}\right)}{B\left(\Phi_{n}\right)} \theta\left(k_{\mathrm{T}}^{\prime}-k_{\mathrm{T}}\right) d \Phi_{r}^{\prime}\right\}\right.}
\end{aligned}
$$

- Main focus: matching of accurate fixed-order predictions with PS for SM processes.
- Several BSM applications exist (by far, not as many as in MG5_aMC@NLO).
- ~ 100 processes, ~ 100 authors contributed.
- All publicly available at

```
powhegbox.mib.infn.it
```

- Two main releases:
- POWHEG BOX V2: main release, almost all processes are here
- POWHEG BOX RES: most recent one, able to deal with processes with resonances

Processes implemented in the POWHEG BOX (I)

- Vector bosons
- Z/W (with decay) (Alioli, Nason, Re, C.O., 2008)
- Z/Wj (with decay) (Alioli, Nason, Re, C.O., 2010)
- $W^{+} W^{+} j j$ (Melia, Nason, Röntsch, Zanderighi, 2011)
- $W^{+} W^{+} j j$ and $W^{+} W^{-} j j$ via VBF (Jäger, Zanderighi, 2011 and 2013)
- diboson production (with decay), (Melia, Nason, Röntsch, Zanderighi, 2011)
- W production with some EW corrections, (Bernaciak, Wackeroth, 2012)
- W/Z production with EW corrections and QED shower, (Barzè, Montagna, Nason, Nicrosini, Piccinini, 2012 + Vicini, 2013)
- Zij in VBF (Jäger, Schneider, Zanderighi, 2012)
- Zij(Re, 2012)
- Wij and Zjj (Campbell, Ellis, Nason, Zanderighi, 2013)
- ZZ, WZ and $W^{+} W^{-}$(Nason, Zanderighi, 2013)
- W/Z in VBF (Schissler, Zeppenfeld, 2013)
- ZZjj in VBF (Jäger, Karlberg, Zanderighi, 2013)
- W (Barzè, Montagna, Nason, Nicrosini, Piccinini, 2012 + Vicini, 2013)
- Zij in VBF (Jäger, Schneider, Zanderighi, 2012)
- Zij(Re, 2012)
- Wij and Zji (Campbell, Ellis, Nason, Zanderighi, 2013)
- ZZ, WZ and $W^{+} W^{-}$(Nason, Zanderighi, 2013)
- W/Z in VBF (Schissler, Zeppenfeld, 2013)
- ZZij in VBF (Jäger, Karlberg, Zanderighi, 2013)
- W γ (Barzè, Chiesa, Montagna, Nason, Nicrosini, Piccinini, Prosperi, 2014)
- γj (Ježo, Klasen, Klein-Bösing, König, Poppenborg, 2016 and 2017)
- WW and WWj with MiNLO (Hamilton, Melia, Monni, Re, Zanderighi, 2016)
- WZ $j j$ in VBF (Jäger, Karlberg, Scheller, 2018)
- $W^{ \pm} W^{ \pm} j j$ in VBF with EW corrections (Chiesa, Denner, Lang, Pellen, 2019)
- $g g \rightarrow V V$ plus decay (Alioli, Ferrario Ravasio, Lindert, Röntsch, 2021)
- diboson production (with decay) with EW corrections, (Chiesa, Re, C.O., 2020)

The POWHEG BOX framework

Processes implemented in the POWHEG BOX (II)

- Higgs boson
- H in gluon fusion (Alioli, Nason, Re, C.O., 2008); with mass and EW effects, (Bagnaschi, Degrassi, Slavich, Vicini, 2011)
- Hij in VBF (Nason, C.O., 2010)
- $t \bar{f} H$ (Garzelli, Kardos, Papadopoulos, Trocsanyi, 2011; Hartanto, Jäger, Reina, Wackeroth, 2015)
- $t H^{-}$(Klasen, Kovarik, Nason, Weydert, 2012)
- H in gluon fusion with quark mass and EW effects (Bagnaschi, Degrassi, Slavich, Vicini, 2011)
- Hj and Hjj in gluon fusion (Campbell, Ellis, Frederix, Nason, Williams, C.O., 2012)
- $H V$ and $H V j, V=W^{ \pm}, Z$ (with decay) (Luisoni, Nason, Tramontano, C.O., 2013); with EW effects (Granata, Lindert, Pozzorini, C.O., 2017)
- $g g \rightarrow H Z$ (Luisoni, Tramontano, C.O., 2013)
- Hjij in VBF (Jäger, Schissler, Zeppenfeld, 2014)
- b̄̄H (Jäger, Reina, Wackeroth, 2015)
- HH in gluon fusion (Heinrich, Jones, Kerner, Luisoni, Vryonidou + Scyboz, 2017)
- $H W^{+} W^{-}$and HZZ (Baglio, 2015 and 2016)
- Jet production
- ji (Alioli, Hamilton Nason, Re, C.O., 2010)
- jij (Kardos, Nason, C.O., 2014)
- Beyond SM
- H in gluon fusion in the MSSM and 2HDM (Bagnaschi, Degrassi, Slavich, Vicini, 2011)
- Slepton pair production (Jäger, von Manteuffel, Thier, 2012)
- Squark pair production (Gavin, Hangst, Krämer, Mühlleitner, Pellen, Popenda, Spira, 2013)
- Dark matter + monojet (Haisch, Kahlhoefer, Re, 2013 and 2015)
- Slepton pair production $+j$ (Jäger, von Manteuffel, Thier, 2014)
- Electroweakino pair production in SUSY-QCD (Baglio, Jäger, Kesenheimer, 2016)
- Electroweakino pair production $+j$ (Baglio, Jäger, Kesenheimer, 2017)
- $X_{0} i j$ (scalar CP violating production) (Nason, Rocco, Zaro, C.O., 2020)
- EFT
- HW/Z (Mimasu, Sanz, Williams, 2016)
- W/Z and $H W / Z$ and H via VBF (Alioli, Dekens, Girard, Mereghetti, 2018) and (Alioli, Cirigliano, Dekens, de Vries, Mereghetti, 2017)
- $W^{+} W^{-}$(Baglio, Dawson, Lewis, 2018)
- NNLO+PS
- H and W/Z (Monni, Nason, Re, Wiesemann, Zanderighi, 2018 and 2020)
- $W^{+} W^{-}$(Re, Wiesemann, Zanderighi, 2018)
- $t \bar{t}$ (Mazzitelli, Monni, Nason, Re, Wiesemann, 2020)

Beyond NLO+PS

- current EXP precision demands for predictions beyond NLO(+PS) accuracy.

[ATLAS, 1802.04146]
- NNLO QCD corrections + resummation in corners of phase-space.
[e.g. ggH: jet-vetos, DY: measurements at the Z peak]
- Often NLO EW corrections are important too:
$\alpha_{\mathrm{S}}^{2} \sim \alpha+$ enhanced effects in some phase-space regions
- Focus of the rest of the talk:
NNLO+PS

NNLO+PS: what do we want to achieve?

- Consider $F+X$ production ($F=$ massive color singlet)
- NNLO accuracy for observables inclusive on radiation.
- NLO(LO) accuracy for $F+1(2)$ jet observables (in the hard region). [$\left.d \sigma / d p_{T, j_{1}}\right]$
- appropriate scale choice for each kinematics regime
- Sudakov resummation from the Parton Shower (PS)

$$
\left[\sigma\left(p_{T, j}<p_{T, \text { veto })}\right)\right]
$$

- preserve the PS accuracy (leading log - LL)
- possibly, no merging scale required.
- methods: reweighted MiNLO' ("NNLOPS") [Hamilton,et al. '12,'13,..], UNNLOPS
[Höche,Li,Prestel '144....], Geneva [Alioli,Bauer,etal. '13;'15;'16,...], MiNNLOPs
[Monni,Nason,ER,Wiesemann,Zanderighi' '19,...]
- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach, i.e. using PS concepts (without spoiling formal NLO accuracy)
- from $F+n$ jets at NLO + PS, one gets finite results also for $F+(n-1), F+(n-2), \ldots$ jets
\Rightarrow it is a merging, without an external merging scale (just 1 event sample)

MinLO for $\mathrm{F}+\mathrm{j}$

"color singlet (F) + 1 j " processes

MinLo for $\mathrm{F}+\mathrm{j}$

"color singlet (F) + 1 j" processes

$$
\bar{B}_{\mathrm{NLO}}^{(\mathrm{FJ})}=\frac{\alpha_{\mathrm{S}}\left(\mu_{R}\right)}{2 \pi}\left[B^{(\mathrm{FJ})}+\frac{\alpha_{\mathrm{S}}}{2 \pi} V^{(\mathrm{FJ})}\left(\mu_{R}\right)+\frac{\alpha_{\mathrm{S}}}{2 \pi} \int d \Phi_{\mathrm{r}} R^{(\mathrm{FJ})}\right]
$$

$$
\bar{B}_{\mathrm{MiNLO}}^{(\mathrm{FJ})}=\frac{\alpha_{\mathrm{S}}\left(q_{\mathrm{T}}\right)}{2 \pi}\left[\Delta_{\mathrm{f}}^{2}\left(q_{\mathrm{T}}\right)\left[B^{(\mathrm{FJ})}\left(1+\frac{\alpha_{\mathrm{S}}}{2 \pi} \tilde{S}_{\mathrm{f}}^{(1)}\left(q_{\mathrm{T}}\right)\right)+\frac{\alpha_{\mathrm{S}}}{2 \pi} V^{(\mathrm{FJ})}\left(q_{\mathrm{T}}\right)\right]+\frac{\alpha_{\mathrm{S}}}{2 \pi} \int d \Phi_{\mathrm{r}} \Delta_{\mathrm{f}}^{2}\left(q_{\mathrm{T}}\right) R^{(\mathrm{FJ})}\right]
$$

- MiNLO-improved FJ yields finite results also when 1st jet is unresolved $\left(q_{\mathrm{T}} \rightarrow 0\right)$
- straightforward to apply to the POWHEG $\bar{B}^{(\text {FJ })}$ function

MinLO' and NLO+PS merging

- Minlo: $F+2 \mathrm{j}$: finite and nicely working also for 0 - and 1-jet region, but no exact claim on the accuracy in those regions.
- MinLO' : $F+1$ j: claim on the accuracy is possible.
- inclusive NLO can be recovered ($\mathrm{NLO}^{(0)}$), without spoiling NLO accuracy of $F+j\left(\mathrm{NLO}^{(1)}\right)$:

NLO+PS merging, without merging scale

- accurate control of subleading small- p_{T} logarithms is needed (e.g. B_{2} (NNLL))
* V + 0,1,2 jets

* single-top $+0,1$ jets

From NLO+PS merging to NNLO+PS

- starting from a MinLo' generator, it's possible to match a PS simulation to NNLO.
- FJ-MinLO' (+POWHEG) generator gives F-FJ @ NLOPS:

	F (inclusive)	$F+j$ (inclusive)	$F+2 j$ (inclusive)
$\sqrt{ }$ F-FJ @ NLOPS	NLO	NLO	LO
$F @$ NNLOPS	NNLO	NLO	LO

From NLO+PS merging to NNLO+PS

- starting from a MinLO' generator, it's possible to match a PS simulation to NNLO.
- FJ-MiNLO' (+POWHEG) generator gives F-FJ @ NLOPS:

	F (inclusive)	$F+j$ (inclusive)	$F+2 j$ (inclusive)
$\sqrt{ }$ F-FJ @ NLOPS	NLO	NLO	LO
$F @$ NNLOPS	NNLO	NLO	LO

- reweighting (differential on Φ_{F}) of "MiNLO-generated" events:

$$
W\left(\Phi_{\mathrm{F}}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{\mathrm{F}}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{\mathrm{F}}}\right)_{\mathrm{FJ}-\mathrm{MiNLO}^{\prime}}}
$$

- by construction NNLO accuracy on inclusive observables;
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of FJ -MinLO' in 1-jet region;

From NLO+PS merging to NNLO+PS

- starting from a MinLO' generator, it's possible to match a PS simulation to NNLO.
- FJ-MiNLO' (+POWHEG) generator gives F-FJ @ NLOPS:

	F (inclusive)	$F+j$ (inclusive)	$F+2 j$ (inclusive)
$\sqrt{ }$ F-FJ @ NLOPS	NLO	NLO	LO
$\sqrt{ } \mathrm{F} @$ NNLOPS	NNLO	NLO	LO

- reweighting (differential on Φ_{F}) of "MiNLO-generated" events:

$$
W\left(\Phi_{\mathrm{F}}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{\mathrm{F}}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{\mathrm{F}}}\right)_{\mathrm{FJ}-\mathrm{MiNLO}^{\prime}}}=\frac{c_{0}+c_{1} \alpha_{\mathrm{S}}+c_{2} \alpha_{\mathrm{S}}^{2}}{c_{0}+c_{1} \alpha_{\mathrm{S}}+d_{2} \alpha_{\mathrm{S}}^{2}} \simeq 1+\frac{c_{2}-d_{2}}{c_{0}} \alpha_{\mathrm{S}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)
$$

- by construction NNLO accuracy on inclusive observables;
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of FJ -MinLO' in 1-jet region;

From NLO+PS merging to NNLO+PS

- starting from a MinLO' generator, it's possible to match a PS simulation to NNLO.
- FJ-MiNLO' (+POWHEG) generator gives F-FJ @ NLOPS:

	F (inclusive)	$F+j$ (inclusive)	$F+2 j$ (inclusive)
$\sqrt{ } \mathrm{F}-\mathrm{FJ}$ @ NLOPS	NLO	NLO	LO
$\sqrt{\mathrm{F}}$ @ NNLOPS	NNLO	NLO	LO

- reweighting (differential on Φ_{F}) of "MiNLO-generated" events:

$$
W\left(\Phi_{\mathrm{F}}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{\mathrm{F}}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{\mathrm{F}}}\right)_{\mathrm{FJ}-\mathrm{MiNLO}^{\prime}}}=\frac{c_{0}+c_{1} \alpha_{\mathrm{S}}+c_{2} \alpha_{\mathrm{S}}^{2}}{c_{0}+c_{1} \alpha_{\mathrm{S}}+d_{2} \alpha_{\mathrm{S}}^{2}} \simeq 1+\frac{c_{2}-d_{2}}{c_{0}} \alpha_{\mathrm{S}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)
$$

- by construction NNLO accuracy on inclusive observables;
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of FJ -MinLO' in 1-jet region;
- succesfully employed for ggH, Drell-Yan, VH,WW production, $H \rightarrow b \bar{b}$
[Hamilton,Nason,ER,Zanderighi '13 / Karlberg,ER,Zanderighi '14 / Astill,Bizon,ER,Zanderighi '16-'18 ER,Wiesemann,Zanderighi '18, Bizon,ER,Zanderighi '19]
- $p p \rightarrow W^{+} W^{-} \rightarrow 4 \ell$: doable, but at the edge of feasibility: $\operatorname{dim}\left(\Phi_{4 \ell}\right)=9$
- Albeit formally correct, reweighting is a bottleneck for complex processes
- approximations needed
- discrete binning \rightarrow delicate in less populated regions
- it remains very CPU intensive
- for complicated processes, it's not user friendly
- In 1908.06987, we developed a new method: NNLOPS accuracy without reweighting
- Through a precise connection of the MiNLO' method and p_{T} resummation, possible to isolate the missing ingredients and reach NNLO accuracy
- In the follow-up paper 2006.04133 we refined some implementational aspects

$$
\text { [Notation: From this point, } \left.X=\sum_{k}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{k}[X]^{(k)}\right]
$$

MiNNLO $_{\text {pS }}$ in a nutshell

- from p_{T} resummation, differential cross section for $F+X$ production can be written as:

$$
\begin{gathered}
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{\mathrm{T}} \mathrm{~d} \Phi_{\mathrm{F}}}=\frac{\mathrm{d}}{\mathrm{~d} p_{\mathrm{T}}}\left\{\mathcal{L}\left(\Phi_{\mathrm{F}}, p_{\mathrm{T}}\right) \exp \left(-\tilde{S}\left(p_{\mathrm{T}}\right)\right)\right\}+R_{\text {finite }}\left(p_{\mathrm{T}}\right) \\
\mathcal{L}\left(\Phi_{\mathrm{F}}, p_{\mathrm{T}}\right) \ni\left\{H^{(1)}, H^{(2)}, C^{(1)}, C^{(2)},\left(G^{(1)} \cdot G^{(1)}\right)\right\} \quad R_{\text {finite }}\left(p_{\mathrm{T}}\right)=\frac{\mathrm{d} \sigma_{\mathrm{FJ}}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{~d} p_{\mathrm{T}}}-\frac{\mathrm{d} \sigma^{\text {sing }}}{\mathrm{d} \Phi_{\mathrm{F}} \mathrm{~d} p_{\mathrm{T}}}
\end{gathered}
$$

- $\mathcal{L}\left(\Phi_{\mathrm{F}}, p_{\mathrm{T}}\right)$: all the terms needed to obtain $\mathrm{NNLO}^{(\mathrm{F})}$ accuracy upon integration in p_{T}

MiNNLO $_{\text {pS }}$ in a nutshell

- from p_{T} resummation, differential cross section for $F+X$ production can be written as:

$$
\begin{gathered}
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{\mathrm{T}} \mathrm{~d} \Phi_{\mathrm{F}}}=\frac{\mathrm{d}}{\mathrm{~d} p_{\mathrm{T}}}\left\{\mathcal{L}\left(\Phi_{\mathrm{F}}, p_{\mathrm{T}}\right) \exp \left(-\tilde{S}\left(p_{\mathrm{T}}\right)\right)\right\}+R_{\text {finite }}\left(p_{\mathrm{T}}\right) \\
\mathcal{L}\left(\Phi_{\mathrm{F}}, p_{\mathrm{T}}\right) \ni\left\{H^{(1)}, H^{(2)}, C^{(1)}, C^{(2)},\left(G^{(1)} \cdot G^{(1)}\right)\right\} \quad R_{\text {finite }}\left(p_{\mathrm{T}}\right)=\frac{\mathrm{d} \sigma_{\mathrm{FJ}}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{~d} p_{\mathrm{T}}}-\frac{\mathrm{d} \sigma^{\text {sing }}}{\mathrm{d} \Phi_{\mathrm{F}} \mathrm{~d} p_{\mathrm{T}}}
\end{gathered}
$$

\checkmark recast it, to match the POWHEG $\bar{B}^{(\mathrm{FJ})}\left(\Phi_{\mathrm{FJ}}\right)$

$$
\begin{gathered}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{~d} p_{\mathrm{T}}}=\exp \left[-\tilde{S}\left(p_{\mathrm{T}}\right)\right]\left\{D\left(p_{\mathrm{T}}\right)+\frac{R_{\mathrm{finite}}\left(p_{\mathrm{T}}\right)}{\exp \left[-\tilde{S}\left(p_{\mathrm{T}}\right)\right]}\right\} \\
D\left(p_{\mathrm{T}}\right) \equiv-\frac{\mathrm{d} \tilde{S}\left(p_{\mathrm{T}}\right)}{\mathrm{d} p_{\mathrm{T}}} \mathcal{L}\left(p_{\mathrm{T}}\right)+\frac{\mathrm{d} \mathcal{L}\left(p_{\mathrm{T}}\right)}{\mathrm{d} p_{\mathrm{T}}} \quad \tilde{S}\left(p_{\mathrm{T}}\right)=\int_{p_{\mathrm{T}}}^{Q} \frac{d q^{2}}{q^{2}}\left[A_{\mathrm{f}}\left(\alpha_{\mathrm{S}}(q)\right) \log \frac{Q^{2}}{q^{2}}+B_{\mathrm{f}}\left(\alpha_{\mathrm{S}}(q)\right)\right]
\end{gathered}
$$

MiNNLO $_{\text {pS }}$ in a nutshell

- from p_{T} resummation, differential cross section for $F+X$ production can be written as:

$$
\begin{gathered}
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{\mathrm{T}} \mathrm{~d} \Phi_{\mathrm{F}}}=\frac{\mathrm{d}}{\mathrm{~d} p_{\mathrm{T}}}\left\{\mathcal{L}\left(\Phi_{\mathrm{F}}, p_{\mathrm{T}}\right) \exp \left(-\tilde{S}\left(p_{\mathrm{T}}\right)\right)\right\}+R_{\text {finite }}\left(p_{\mathrm{T}}\right) \\
\mathcal{L}\left(\Phi_{\mathrm{F}}, p_{\mathrm{T}}\right) \ni\left\{H^{(1)}, H^{(2)}, C^{(1)}, C^{(2)},\left(G^{(1)} \cdot G^{(1)}\right)\right\} \quad R_{\text {finite }}\left(p_{\mathrm{T}}\right)=\frac{\mathrm{d} \sigma_{\mathrm{FJ}}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{~d} p_{\mathrm{T}}}-\frac{\mathrm{d} \sigma^{\operatorname{sing}}}{\mathrm{d} \Phi_{\mathrm{F}} \mathrm{~d} p_{\mathrm{T}}}
\end{gathered}
$$

\checkmark recast it, to match the POWHEG $\bar{B}^{(\mathrm{FJ})}\left(\Phi_{\mathrm{FJ}}\right)$

$$
\begin{gathered}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{~d} p_{\mathrm{T}}}=\exp \left[-\tilde{S}\left(p_{\mathrm{T}}\right)\right]\left\{D\left(p_{\mathrm{T}}\right)+\frac{R_{\text {finite }}\left(p_{\mathrm{T}}\right)}{\exp \left[-\tilde{S}\left(p_{\mathrm{T}}\right)\right]}\right\} \\
D\left(p_{\mathrm{T}}\right) \equiv-\frac{\mathrm{d} \tilde{S}\left(p_{\mathrm{T}}\right)}{\mathrm{d} p_{\mathrm{T}}} \mathcal{L}\left(p_{\mathrm{T}}\right)+\frac{\mathrm{d} \mathcal{L}\left(p_{\mathrm{T}}\right)}{\mathrm{d} p_{\mathrm{T}}} \quad \tilde{S}\left(p_{\mathrm{T}}\right)=\int_{p_{\mathrm{T}}}^{Q} \frac{d q^{2}}{q^{2}}\left[A_{\mathrm{f}}\left(\alpha_{\mathrm{S}}(q)\right) \log \frac{Q^{2}}{q^{2}}+B_{\mathrm{f}}\left(\alpha_{\mathrm{S}}(q)\right)\right]
\end{gathered}
$$

- expand the above integrand in power of $\alpha_{\mathrm{S}}\left(p_{\mathrm{T}}\right)$, keep the terms that are needed to get $\mathrm{NLO}^{(\mathrm{F})}$ \& $\mathrm{NNLO}^{(\mathrm{F})}$ accuracy, when integrating over p_{T}

MiNNLO $_{\text {pS }}$ in a nutshell

- from p_{T} resummation, differential cross section for $F+X$ production can be written as:

$$
\begin{gathered}
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{\mathrm{T}} \mathrm{~d} \Phi_{\mathrm{F}}}=\frac{\mathrm{d}}{\mathrm{~d} p_{\mathrm{T}}}\left\{\mathcal{L}\left(\Phi_{\mathrm{F}}, p_{\mathrm{T}}\right) \exp \left(-\tilde{S}\left(p_{\mathrm{T}}\right)\right)\right\}+R_{\text {finite }}\left(p_{\mathrm{T}}\right) \\
\mathcal{L}\left(\Phi_{\mathrm{F}}, p_{\mathrm{T}}\right) \ni\left\{H^{(1)}, H^{(2)}, C^{(1)}, C^{(2)},\left(G^{(1)} \cdot G^{(1)}\right)\right\} \quad R_{\text {finite }}\left(p_{\mathrm{T}}\right)=\frac{\mathrm{d} \sigma_{\mathrm{FJ}}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{~d} p_{\mathrm{T}}}-\frac{\mathrm{d} \sigma^{\text {sing }}}{\mathrm{d} \Phi_{\mathrm{F}} \mathrm{~d} p_{\mathrm{T}}}
\end{gathered}
$$

- recast it, to match the POWHEG $\bar{B}^{(\mathrm{FJ})}\left(\Phi_{\mathrm{FJ}}\right)$

$$
\begin{gathered}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{~d} p_{\mathrm{T}}}=\exp \left[-\tilde{S}\left(p_{\mathrm{T}}\right)\right]\left\{D\left(p_{\mathrm{T}}\right)+\frac{R_{\text {finite }}\left(p_{\mathrm{T}}\right)}{\exp \left[-\tilde{S}\left(p_{\mathrm{T}}\right)\right]}\right\} \\
D\left(p_{\mathrm{T}}\right) \equiv-\frac{\mathrm{d} \tilde{S}\left(p_{\mathrm{T}}\right)}{\mathrm{d} p_{\mathrm{T}}} \mathcal{L}\left(p_{\mathrm{T}}\right)+\frac{\mathrm{d} \mathcal{L}\left(p_{\mathrm{T}}\right)}{\mathrm{d} p_{\mathrm{T}}} \quad \tilde{S}\left(p_{\mathrm{T}}\right)=\int_{p_{\mathrm{T}}}^{Q} \frac{d q^{2}}{q^{2}}\left[A_{\mathrm{f}}\left(\alpha_{\mathrm{S}}(q)\right) \log \frac{Q^{2}}{q^{2}}+B_{\mathrm{f}}\left(\alpha_{\mathrm{S}}(q)\right)\right]
\end{gathered}
$$

- expand the above integrand in power of $\alpha_{\mathrm{S}}\left(p_{\mathrm{T}}\right)$, keep the terms that are needed to get $\mathrm{NLO}^{(\mathrm{F})}$ \& $\mathrm{NNLO}^{(\mathrm{F})}$ accuracy, when integrating over p_{T}
- after expansion, all the terms with explicit logs will be of the type $\alpha_{\mathrm{S}}^{m}\left(p_{\mathrm{T}}\right) L^{n}$, with $n=0,1$.

$$
\int^{Q} \frac{d p_{\mathrm{T}}}{p_{\mathrm{T}}} L^{n} \alpha_{\mathrm{S}}^{m}\left(p_{\mathrm{T}}\right) \exp \left(-\tilde{S}\left(p_{\mathrm{T}}\right)\right) \sim\left(\alpha_{\mathrm{S}}(Q)\right)^{m-(n+1) / 2} \quad L=\log Q / p_{\mathrm{T}}
$$

$M_{i N N L O P S}$

Final master formula:

$$
\begin{aligned}
\frac{\mathrm{d} \bar{B}\left(\Phi_{\mathrm{FJ}}\right)}{\mathrm{d} \Phi_{\mathrm{FJ}}} & =\exp \left[-\tilde{S}\left(p_{\mathrm{T}}\right)\right]\left\{\frac{\alpha_{\mathrm{S}}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{\mathrm{FJ}}}{\mathrm{~d} \Phi_{\mathrm{FJ}}}\right]^{(1)}\left(1+\frac{\alpha_{\mathrm{S}}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\tilde{S}\left(p_{\mathrm{T}}\right)\right]^{(1)}\right)\right. \\
& \left.+\left(\frac{\alpha_{\mathrm{S}}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{\mathrm{FJ}}}{\mathrm{~d} \Phi_{\mathrm{FJ}}}\right]^{(2)}+\left[D\left(p_{\mathrm{T}}\right)\right]^{(\geq 3)} F_{\ell}^{\mathrm{corr}}\left(\Phi_{\mathrm{FJ}}\right)\right\}
\end{aligned}
$$

- MinLo' recovered
${ }^{-}\left[D\left(p_{\mathrm{T}}\right)\right]^{(\geq 3)}=\underbrace{-\frac{\mathrm{d} \tilde{S}\left(p_{\mathrm{T}}\right)}{\mathrm{d} p_{\mathrm{T}}} \mathcal{L}\left(p_{\mathrm{T}}\right)+\frac{\mathrm{d} \mathcal{L}\left(p_{\mathrm{T}}\right)}{\mathrm{d} p_{\mathrm{T}}}}_{D}-\frac{\alpha_{\mathrm{S}}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[D\left(p_{\mathrm{T}}\right)\right]^{(1)}-\left(\frac{\alpha_{\mathrm{S}}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[D\left(p_{\mathrm{T}}\right)\right]^{(2)}$
- $F_{\ell}^{\text {corr }}\left(\Phi_{\mathrm{FJ}}\right)$: projection $\rightarrow \operatorname{recover}\left[D\left(p_{\mathrm{T}}\right)\right]{ }^{(\geq 3)}$ when integrating over Φ_{FJ} at fixed $\left(\Phi_{\mathrm{F}}, p_{\mathrm{T}}\right)$
. The second radiation is generated by the usual POWHEG mechanism.

$$
\mathrm{d} \sigma=\bar{B}\left(\Phi_{\mathrm{FJ}}\right) \mathrm{d} \Phi_{\mathrm{FJ}}\left\{\Delta_{\mathrm{pwg}}\left(\Lambda_{\mathrm{pwg}}\right)+\mathrm{d} \Phi_{\mathrm{rad}} \Delta_{\mathrm{pwg}}\left(p_{\mathrm{T}, \mathrm{rad}}\right) \frac{R\left(\Phi_{\mathrm{FJ}}, \Phi_{\mathrm{rad}}\right)}{B\left(\Phi_{\mathrm{FJ}}\right)}\right\}
$$

. if emissions are strongly ordered, same emission probabilities as in k_{t}-ordered shower \rightarrow LL shower accuracy preserved

MiNNLOps: ggH

results from 2006.04133

- expected very good agreement with NNLO: 4\% difference
- results from 1908.06987: 8\% difference
- correct shape

PS, no hadronization, no MPI

- expected Sudakov shape
- MiNNLO $_{\text {PS }} \rightarrow$ NLO at large p_{T}

MiNNLOps: diboson production

The method is general: recently, applied to more complex color-singlet production processes.

plots from [Lombardi, Wiesemann, Zanderighi '20,'21]

MiNNLOps: top-pair production

- Method extended to deal with heavy quarks in the final state: $t \bar{t}$ at NNLO+PS !!
[Mazzitelli,Monni,Nason,ER,Wiesemann,Zanderighi '20]
- Starting point: resummation formula for $t \bar{t}$ transverse momentum.
[Catani,Grazzini, Torre '14] Very schematically:

$$
\begin{aligned}
\mathrm{d} \sigma_{\mathrm{res}}^{F} & \sim \frac{\mathrm{~d}}{\mathrm{~d} p_{T}}\left\{e^{-S} \operatorname{Tr}(\mathbf{H} \boldsymbol{\Delta})(C \otimes f)(C \otimes f)\right\} \\
S & =-\int \frac{\mathrm{d} q^{2}}{q^{2}}\left[\frac{\alpha_{s}(q)}{2 \pi}\left(A^{(1)} \log (M / q)+B^{(1)}\right)+\frac{\alpha_{s}^{2}(q)}{(2 \pi)^{2}}\left(A^{(2)} \log (M / q)+B^{(2)}\right)+\ldots\right]
\end{aligned}
$$

$\operatorname{Tr}(\mathbf{H} \boldsymbol{\Delta})=\langle M| \Delta|M\rangle, \quad \Delta=\mathbf{V}^{\dagger} \mathbf{D} \mathbf{V}, \quad \mathbf{V}=\exp \left\{-\int \frac{\mathrm{d} q^{2}}{q^{2}}\left[\frac{\alpha_{s}(q)}{2 \pi} \boldsymbol{\Gamma}_{\mathbf{t}}^{(\mathbf{1})}+\frac{\alpha_{s}^{2}(q)}{(2 \pi)^{2}} \Gamma_{\mathbf{t}}^{(2)}\right]\right\}$

- With some approximations (respecting our goal), terms due to soft interference can be rearranged so that the "resummation" can be eventually recasted as:

$$
\mathrm{d} \sigma_{\mathrm{res}}^{F} \sim \frac{\mathrm{~d}}{\mathrm{~d} p_{T}}\{\sum_{i \in \text { colours }} e^{-\bar{S}_{i}} \underbrace{c_{i} \bar{H} \overline{(C \otimes f)} \overline{(C \otimes f)}}_{\equiv \overline{\mathscr{L}}_{i}}\}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{5}\right)
$$

some inputs derived in [Catani, Devoto, Grazzini, Kallweit, Mazzitelli + Sargsyan '19]

- Each term has the same structure as in the color-singlet case!

MiNNLOps: t̄̄ results

- Good agreement with data.
- $m_{t \bar{t}}$: finite width \& non-relativistic effects in very first bin.
- So far, on-shell top quarks.
- NWA + decay at tree-level, retaining sping correlations, should be doable.

Summary

- NLO+PS, status of the POWHEG BOX framework, MinLO idea
- Shown NNLO+PS accurate results
- MiNNLO ${ }^{\text {Ps }}$: NNLO+PS, without reweighting and with no merging scales
- NNLO+PS results for top-pair production
- several applications are now possible, certainly all $2 \rightarrow 2$ color-singlet production (i.e. dibosons)

What next?

- Consider other subleading effects, e.g.:
- formal accuracy of the PS \leftrightarrow logarithmic accuracy of a matched computation
- EW corrections: (N)NLO $\mathrm{QCD}^{+}+\mathrm{NLO}_{\mathrm{EW}}+\mathrm{PS}$
- Applications in EXP analysis

Summary

- NLO+PS, status of the POWHEG BOX framework, MiNLO idea
- Shown NNLO+PS accurate results
- MiNNLO ${ }^{\text {Ps }}$: NNLO+PS, without reweighting and with no merging scales
- NNLO+PS results for top-pair production
- several applications are now possible, certainly all $2 \rightarrow 2$ color-singlet production (i.e. dibosons)

What next?

- Consider other subleading effects, e.g.:
- formal accuracy of the PS \leftrightarrow logarithmic accuracy of a matched computation
- EW corrections: (N)NLO $\mathrm{QCD}^{+}+\mathrm{NLO}_{\mathrm{EW}}+\mathrm{PS}$
- Applications in EXP analysis

Thank you for your attention!

