

Light hadron production at the LHCb experiment

Sara Sellam

FTE@LHC - June 3, 2021

- Particle identification in the LHCb experiment.
- Light hadrons production: goal and perspective.
- Conclusion.

The LHCb detector

- From heavy flavor physics to general purpose detector.
- Forward detector fully instrumented in $2 < \eta < 5$.
- Excellent tracking, momentum resolution and particle identification.

JINST 3 (2008)S08005

IJMPA 30 (2015) 1530022

RICH detectors provide excellent $p/K/\pi$ discrimination in the momentum range 2-100 GeV/c.

JINST 3 (2008) S08005

IJMPA30 (2015) 1530022

- RICH detectors provide excellent $p/K/\pi$ discrimination in the momentum range 2-100 GeV/c.
- Combining the information from the PID sub-detectors, two sets of global PID variables are built.

PID variables

 $\Delta \log \mathcal{L}$: sum of the likelihood information of each sub- detector. **ProbNN**: built using multivariate techniques created combining tracking and PID information. This results in single probability values for each particle hypothesis.

• The PID performance is evaluated with a data-driven approach using dedicated calibration samples, as the PID variables are reproduced with insufficient precision in the LHCb simulation.

Species	Soft	Hard
e^{\pm}	_	$J\!/\!\psi \to \mathrm{e^+e^-}$
μ^{\pm}	${ m D}_{ m s}^+\! ightarrow\mu^+\mu^-\pi^+$	$J\!/\!\psi ightarrow \mu^+\mu^-$
π^{\pm}	${ m K_{s}^{0}} ightarrow \pi^{+}\pi^{-}$	$D^* \rightarrow D^0 \pi^+, D^0 \rightarrow K^- \pi^+$
K^{\pm}	$D_s^+ \rightarrow K^+ K^- \pi^+$	$\mathrm{D}^* \rightarrow \mathrm{D}^0 \pi^+, \mathrm{D}^0 \rightarrow \mathrm{K}^- \pi^+$
p^{\pm}	$\Lambda^0 ightarrow \mathrm{p}\pi^-$	$\Lambda^0 \rightarrow p\pi^-, \Lambda_c^+ \rightarrow pK^-\pi^+$

LHCb operation modes

In addition to pp:

- Fixed-target modes: Noble gases injected in the interaction region thanks to SMOG.
- Unique experiment which allows data taking in fixed target mode.

- Soft probe of the Quark-Gluon Plasma, specially prompt probes which are directly produced in the Primary Vertex.
- Light hadrons with strange quarks are measured to study strangeness enhancement from *pp*, *p*Pb and PbPb collisions.
- Clean probe for Cold Nuclear Matter (CNM) effects.

LHCb provide measurements for CNM effects at low p_T and forward rapidities, where nPDFs are poorly constrained.

Nuclear modification factor Effects of nuclear matter: R^h_{pPb}(\eta_{cms}, p_T) = $\frac{1}{A} \frac{d^2 \sigma^h_{pPb}(\eta_{cms}, p_T)/dp_T d\eta_{cms}}{d^2 \sigma^h_{pp}(\eta_{cms}, p_T)/dp_T d\eta_{cms}}$ Forward-to-backward ratio:

$$\mathbf{R}_{FB}^{h}(\eta_{cms}, p_{T}) = \frac{\mathrm{d}^{2}\sigma_{p\mathrm{Pb}}^{h}(\eta_{cms}, p_{T})/\mathrm{d}p_{T}\mathrm{d}\eta_{cms}}{\mathrm{d}^{2}\sigma_{\mathrm{Pb}p}^{h}(\eta_{cms}, p_{T})/\mathrm{d}p_{T}\mathrm{d}\eta_{cms}}$$

Baryon-to-meson ratio:

$$R_{B/M}(\eta_{cms}, p_T) = \frac{d^2 \sigma_{Baryons}(\eta_{cms}, p_T)/dp_T d\eta_{cms}}{d^2 \sigma_{meson}(\eta_{cms}, p_T)/dp_T d\eta_{cms}}$$
$$h = \pi, K, p$$

- R_{pPb} for p shows a strong Cronin enhancement at around 4 GeV.
- pions and kaons ratio indicates the presence of a little or no nuclear modification at high *p*_T.

Fig. 1: R_{pPb} for different particle species in p–Pb collisions Measured by ALICE.

 $\rm PLB760~(2016)~720\text{-}735$

Experimental results

Fig. 2: Λ_c^+ $/D^0$ The cross-section ratio in p–Pb collisions measured by LHCb

JHEP02 (2019) 102

• Λ_c^+ / D^0 ratio exhibits an increasing trend with $|y^*|$.

Fig. 3: p/K production ratio in pp and p-Pb collisions in measured by ALICE.

JPCS1137 (2019) 012032

Baryon/meson ratio shows an enhancement at intermediate p_{T} .

< □ > < A >

The goal of the analysis

LHCb-PAPER-2021-015 (in preparation)

Fig. 4: Prompt charged particle production at 5 TeV

LHCb:DIS (2021) ALICE :JHEP 1811 (2018) 01

Our goal is:

$$\frac{\mathrm{d}^{2}\sigma^{h}}{\mathrm{d}p_{T}\mathrm{d}\eta_{cms}}\bigg|_{pp,p\mathrm{Pb},\mathrm{Pb}p} = \frac{1}{\mathcal{L}}\frac{N^{h}(\eta_{cms}, p_{T})}{\Delta p_{T}\Delta\eta_{cms}}$$
$$N^{h} = N^{h}_{cand}\frac{\mathrm{P}}{\epsilon_{reco}\epsilon_{sel}\epsilon_{\mathrm{PID}}(1/\epsilon_{TM})}$$

$$h = \pi, \mathbf{K}, p$$

N^h	number of prompt charged hadrons.	
L	is the luminosity.	
η_{cms}	is the pseudo rapidity in the cms frame	
ϵ_{reco}	is the reconstruction efficiency	
ϵ_{sel}	is the selection efficiency	
ϵ_{PID}	is the PID efficiency	
ϵ_{TM}	is the Truth Matching efficiency	
Р	is the Purity	

- ϵ_{PID} is computed for a set of selections in each (p, η) bin that:
 - \rightarrow maximise the efficiency map of each Track.

 \rightarrow minimise the mis-id efficiency.

Track type	Selection
π	$DLL(K-\pi) < 0$
Κ	$DLL(K-\pi) > 0$
	DLL(p-K) < 0
p	$DLL(p-\pi) > 10$
	DLL(p-K) > 0

Tab. 1: PID selections

PID efficiency in Pbp

 $\pi \rightarrow \pi$

Fig. 5: π efficiency in Pbp

イロト イポト イヨト イヨト

PID efficiency in Pbp

 $K \rightarrow K$

Fig. 6: K efficiency in Pbp

<ロト <同ト < 国ト < 国

PID efficiency in Pbp

 $p \rightarrow p$

Fig. 7: p efficiency in Pbp

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

mis-ID efficiency in Pbp

 $K \rightarrow \pi$

イロト イポト イヨト イヨト

Sara Sellam

990

3

0.05

Fixed Target at the LHCb

- First Measurement of \bar{p} production cross section per He at $\sqrt{S_{NN}} = 110 \text{GeV}$ providing precise result on \bar{p} / p ratio prediction.
- An excess of the p̄ / p ratio for high energy cosmic rays can be an indirect signal of dark matter.
- Many physics opportunities are being explored. LHCb-PUB-2018-015

- Just the beginning of the analysis much more results to come.
- Hadron production in p-Pb probe for Cold Nuclear Matter effects, their understanding needed for QGP interpretation.
- More and more precise results to come from latest Run 2 and future Run 3 data
- Rich physics program with heavy ions and fixed-target ahead for LHCb.