DVCS off a pion target:

experimental assessment for pion GPDs

J. M. Morgado¹, F. De Soto², M. Defurne³, C. Mezrag³, H. Moutarde³, J. Rodríguez-Quintero¹, J. Segovia²

 $31 {\rm st~May}~2021$

¹Dpt. Ciencias Integradas, Universidad de Huelva, Huelva, Spain ²Dpt. Sistemas Fiscos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, Spain ³DPhN/IRFU/CEA-Saclay, Gif-sur-Yvette, France Enversidad de Huelva

Email: josemanuel.morgado@dci.uhu.es

Introduction

Introduction: GPDs and hadron's strcture

Question: How can we gain insights into pion's strcture?

Generalised parton distributions (GPDs)

Probabilistic interpretation: probability amplitude of finding a parton at a given position in transverse plane carrying a momentum fraction "x" of the hadron's light-

cone momentum. [M.Burkardt-PRD:071503(62)2020]

EMT: $\langle \pi (p') | T^{\mu\nu} | \pi (p) \rangle = 2P^{\mu}P^{\nu}\theta_2(t) + \frac{1}{2}(tg^{\mu\nu} - t^{\mu}t^{\nu})\theta_1(t)$

GPD MM: $\int_0^1 dx x H^q(x,\xi,t) = A_{2,0}^q(t) + 4\xi^2 A_{2,2}^q(t)$

[X.Ji-PRL:610(78)1997]

Further properties:

- 1. Parametrize DVCS amplitudes through CFFs.
- 2. PDFs as forward limit.
- 3. Electromagnetic and gravitational FFs as Mellin moments.

Introduction

- 1. Pions: DCSB Nambu-Goldstone bosons
 - Clear window onto emergence of hadronic mass
- **2.** Generalised parton distributions:
 - EMT gravitational form factors.
 - "3D" picture of hadron's structure

Two main questions guide this talk:

- Can we build "theoretically-complete" pion GPD models? Novel GPD models: positivity-saturated GPDs
- Can we probe them in experiment? Pion GPDs through Sullivan process: [D.Amrath et al.-EPJC:179(58)2008]

Introduction

GPD modelling

Can we build "theoretically-complete" pion GPD models?

GPD modelling: definition and properties

- x: Momentum fraction of p.
- ξ : Fraction of momentum longitudinally transferred.
- t: Momentum transfer.

Kinematics:

[M.Diehl-Phys.Rept:41(388)2003]

- DGLAP (|x| > |ξ|): Emits/takes a quark (x > 0) or antiquark (x < 0).
- ERBL: (|x| < |ξ|): Emits pair quark-antiquark.

GPD modelling: definition and properties

• Support:

[M.Diehl et al.-PLB:359(428)1998]

 $(x,\xi)\in [-1,1]\otimes [-1,1]$

• **Polynomiality:** Order-m Mellin moments are degree-(m + 1)

polynomials in ξ .

[X.Ji-JPG:1181(24)1998, A.Radyushkin-PLB:81(449)1999]

$$\int_{-1}^{1} dx x^{m} H(x,\xi,t) = \sum_{\substack{k=0\\k \text{ even}}}^{m+1} c_{k}^{(m)}(t) \xi^{k}$$

Lorentz invariance

• Positivity:

[P.V.Pobylitsa-PRD:114015(65)2002, B.Pire et al.-EPJC:103(8)1999]

$$|H^q(x,\xi,t=0)| \le \sqrt{q\left(\frac{x+\xi}{1+\xi}\right)q\left(\frac{x-\xi}{1-\xi}\right)} \quad , \qquad |x| \ge \xi$$

Positivity of Hilbert space norm

• Low energy soft-pion theorem

PCAC/Axial-Vector WTI

GPD modelling: general strategy

Goal: Build pion GPD models fulfilling all these constraints.

Problem: Different modelling strategies and different problems

Solution:

Covariant extension: given a DGLAP-GPD, the covariant extension allows for computing the corresponding ERBL-GPD such that polynomiality is satisfied.[N.Chouika et al.-EPJC:906(77)2017]

GPD modelling: covariant extension

Covariant extension: given a DGLAP-GPD, the covariant extension allows for computing the corresponding ERBL-GPD such that polynomiality is satisfied.[N.Chouika et al.-EPJC:906(77)2017]

$$H(x,\xi,t) = \mathcal{R}\left[h\left(\beta,\alpha,t\right)\right] + \frac{1}{|\xi|}D^{+}\left(\frac{x}{\xi},t\right) + sgn\left(\xi\right)D^{-}\left(\frac{x}{\xi},t\right)$$

- **1.** Build positive DGLAP GPD \Rightarrow How?
- **2.** Covariant extension: ERBL GPD
- **3.** Soft pion theorem: fix $D^{\pm}(\alpha, 0)$

GPD properties			
Support		Positivity	
[Diehl-PLB(1998)]	V	[PobyPRD(2002), Pire-EPJC(1999)]	V
Polynomiality	_	Soft-pion	
[Ji-JPG(1998), RadyuPLB(1999)]	V	[PolyNPB(1999), MezrPLB(2015)]	V

GPD modelling: positivity saturated models

Question: How can we build a positive DGLAP GPD?

1. Overlap representation [M.Diehl-NPB:33(569)2001]

$$H^{q}(x,\xi,t)|_{|x|\geq\xi} = \int \frac{d^{2}k_{\perp}}{16\pi^{3}}\Psi^{q*}\left(x_{-},k_{\perp,-}^{2}\right)\Psi^{q}\left(x_{+},k_{\perp,+}^{2}\right)$$

2. Assume factorisation of the LFWF [J.-L.Zhang et al.-PLB:136158(815)2021]

$$\begin{split} \Psi^{q}\left(x,k_{\perp}^{2}\right) &\propto \varphi\left(x\right)\phi\left(k_{\perp}^{2}\right) \\ & \checkmark^{(\text{Overalp rep.})} \\ H^{q}\left(x,\xi,t\right)|_{|x|\geq\xi} &= \sqrt{q\left(\frac{x-\xi}{1-\xi}\right)q\left(\frac{x+\xi}{1+\xi}\right)} \Phi\left(x,\xi,t\right) \\ & \checkmark^{(t=0)} \\ H^{q}\left(x,\xi,0\right)|_{|x|\geq\xi} &= \sqrt{q\left(\frac{x-\xi}{1-\xi}\right)q\left(\frac{x+\xi}{1+\xi}\right)} \end{split}$$

Positivity saturated

Pion GPDs

1. Under certain PTIR, chiral symmetry allows to factorize LFWF: [J.-L.Zhang et al.-PLB:136158(815)2021]

$$\Psi_{\pi}^{q}\left(x,k_{\perp}^{2}\right) \propto \sqrt{q_{\pi}\left(x\right)} \frac{M^{2}}{\left(k_{\perp}^{2}+M^{2}\right)^{2}}$$

2. Pion GPD saturating positivity

Pion GPDs

Pion GPDs

x

10/24

Pion GPDs: covariant extension

Covariant extension:

$$H^{q}(x,\xi,t) = \mathcal{R}\left[h\left(\beta,\alpha,t\right)\right] + \frac{1}{|\xi|}D^{+}\left(\frac{x}{\xi},t\right) + sgn\left(\xi\right)D^{-}\left(\frac{x}{\xi},t\right)$$

Fix D-terms with soft pion theorem: [M.V.Polyakov-NPB:231(555)1999, C.Mezrag at al.-PLB:190(741)2015]

$$\begin{aligned} H_{\pi^+}^{I=0}\left(x,\xi,t\right)\big|_{\xi=1,t=0} &= H_{\pi^+}\left(x,\xi,t\right) - H_{\pi^+}\left(-x,\xi,t\right)|_{\xi=1,t=0} = 0 \\ H_{\pi^+}^{I=1}\left(x,\xi,t\right)\big|_{\xi=1,t=0} &= H_{\pi^+}\left(x,\xi,t\right) + H_{\pi^+}\left(-x,\xi,t\right)|_{\xi=1,t=0} = \varphi\left(\frac{1+x}{2}\right) \end{aligned}$$

Pion GPDs: Mellin moments and form factors

D-term t-dependence:

$$d^{\pm}(t) = 1/\left(1 - t/4M^2\right)$$

Great agreement between experimental data for $F_{\pi}(t)$ and $\theta_{1}(t)$ and model prediction with one single free parameter.

Comparison with available data for $\theta_2(t)$ is not as good as for $\theta_1(t)$. This is 12/24 currently being investigated.

Phenomenology of pion GPDs

Can we probe them in experiment?

Phenomenology of pion GPDs: Sullivan process

We have stablished a way of bulding pion GPD models **fulfilling all of the QCD theoretical constraints**, so...

What about phenomenology?

DVCS amplitudes: parametrized by hadron GPDs. $_{\rm [X.Ji-PRD:7114(55)1997]}$

Sullivan process [J.D.Sullivan-PRD:1732(5)1972]

The Sullivan process has already been employed for extracting

π-EFFS.[G.M.Huber at al.-PRC:045203(78)2008]

Can we probe pion GPDs? [D.Amrath at al.-EPJC:179(58)2008]

13/24

Phenomenology of pion GPDs: Sullivan process

In fact... this has been advocated in the recent EIC-Yellow report $_{\rm [EICYR:phys.ins-det/2103.05419]}$

Science Question	Key Measurement	Key Requirements
What are the quark and gluon energy contributions to the pion mass?	Pion structure function data over a range of x and Q^2 .	 Need to uniquely determine <i>e</i> + <i>p</i> → <i>e'</i> + <i>X</i> + <i>n</i> (low − <i>t</i>) CM energy range ~10-100 GeV Charged and neutral currents desirable
Is the pion full or empty of gluons as viewed at large Q ² ?	Pion structure function data at large Q^2 .	CM energy ~100 GeV Inclusive and open-charm detection
What are the quark and gluon energy contributions to the kaon mass?	Kaon structure function data over a range of x and Q^2 .	 Need to uniquely determine e + p → e^t + X + Λ/Σ⁰ (low −t) CM energy range ~10-100 GeV
Are there more or less gluons in kaons than in pions as viewed at large Q ² ?	Kaon structure function data at large Q^2 .	CM energy ~100 GeV Inclusive and open-charm detection
Can we get quantitative guidance on the emergent pion mass mechanism?	Pion form factor data for $Q^2 = 10.40 (\text{GeV}/c)^2$.	 Need to uniquely determine exclusive process e + p → e' + π⁺ + n (low −t) e + p and e + D at similar energies CM energy ~10-75 GeV
What is the size and range of interference between emergent-mass and the Higgs-mass mechanism?	Kaon form factor data for $Q^2 = 10{\text -}20 \text{ (GeV}/c)^2$.	 Need to uniquely determine exclusive process <i>e</i> + <i>p</i> → <i>e'</i> + <i>K</i> + Λ (low − <i>l</i>) L/T separation at CM energy ~10-20 GeV Λ/Σ⁰ ratios at CM energy ~10-50 GeV
What is the difference between the impacts of emergent- and Higgs-mass mechanisms on light-quark behavior?	Behavior of (valence) up quarks in pion and kaon at large x.	CM energy ~20 GeV (lowest CM energy to access large-x region) Higher CM energy for range in Q ² desirable
What is the relationship between dynamically chiral symmetry breaking and confinement?	Transverse-momentum dependent Fragmentation Functions of quarks into pions and kaons.	 Collider kinematics desirable (as compared to fixed-target kinematics) CM energy range ~20-140 GeV
More speculative observables		
What is the trace anomaly contribution to the pion mass?	Elastic J/Ψ production at low W off the pion.	 Need to uniquely determine exclusive process e + p → e' + //Ψ + π⁺ + π (low -t) High luminosity (≥ 10³⁴cm⁻² sec⁻¹) CM energy ~70 GeV
Can we obtain tomographic snapshots of the pion in the transverse plane? What is the pressure distribution in a pion?	Measurement of DVCS off pion target as defined with Sullivan process.	 Need to uniquely determine exclusive process e + p → e' + γ + π⁺ + π (low −t) High luminosity (≥ 10³⁴ cm⁻² sec⁻¹) CM energy ~10-100 GeV
Are transverse momentum distributions universal in pions and protons?	Hadron multiplicities in SIDIS off a pion target as defined with Sullivan process.	 Need to uniquely determine SIDIS off pion <i>e</i> + p → <i>e'</i> + h + X + π (low −<i>l</i>) High luminosity (10³⁴ cm⁻² sec⁻¹) <i>e</i> + p and <i>e</i> + D at similar energies desirable CM energy ~10-100 GeV

Let us see if that would be feasible in a future electron-ion collider.

Phenomenology of pion GPDs: Sullivan process

15/24

Phenomenology of pion GPDs: QCD evolution

16/24

Phenomenology of pion GPDs: Compton Form Factors

Gluon dominance makes essential at least NLO accuracy in any phenomenlogical analysis of DVCS at an EIC.

Phenomenology of pion GPDs: DVCs and Sullivan process

Can we measure DVCS?

One pion exchange approximation: [D.Amrath at al.-EPJC:179(58)2008]

Changing lepton polarisation one can (formally) access interference between DVCS and BH amplitudes.

 $Is \ it \ experimentally \ feasible?$

Phenomenology of pion GPDs: Asymmetry (EIC)

Non-zero asymmetry: optimism about measuring DVCS on pions at future EIC.

Phenomenology of pion GPDs: Asymmetry (EIC)

Non-zero asymmetry: optimism about measuring DVCS on pions at future EIC.

Phenomenology of pion GPDs: Asymmetry (EIC)

Non-zero asymmetry: optimism about measuring DVCS on pions at future EIC.

Summary and perspectives

Summary and perspectives

Summary

- 1. Pion GPD models fulfilling every theoretical constraint
 - Polynomiality: Covariant extension.
 - Positivity
 - PCAC/AV-WTI: Soft pion theorem.
 - Agreement with experimental data for EFFs and GFFs.
- 2. PARTONS implements complete computing chain
 - From GPDs to DVCS CFFs
 - From DVCS CFFs to observables
- 3. DVCS on virtual pions influenced by gluon content
 - Higher order analysis needed for phenomenology.
- 4. Pion structure to be tested at future electron-ion colliders
 - Insights into EHM could be gained experimentally.

Summary and perspectives

Perspectives

Currently at work

- **1.** Exploit realistic pion PDF
- 2. Comparison with previous studies
 - Original paper by D. Amrath, M. Diehl and J. P. Lansberg [D.Amrath et al.-EPJC:179(58)2008]

Forthcoming developments

- 3. Extension of the computating chain
 - Higher order analysis
 - Baryons

Thank you!