TMD phenomenology with the **NangaParbat** code

Valerio Bertone

IRFU, CEA, Université Paris-Saclay

In collaboration with:

R. Abdul Khalek, A. Bacchetta, C. Bissolotti, G. Bozzi, M. Cerutti, F. Delcarro, E. R. Nocera, F. Piacenza, M. Radici, A. Signori

June 1, 2021, STRONG2020 joint workshop 2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº 824093

Factorisations

- The q_T distribution of a generic **high-mass** (Q) system produced, for example, in hadronic collisions has two main regimes:
 - for $q_T \ge Q$ collinear factorisation at *fixed perturbative order* is appropriate:

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{coll.}} = \int_0^1 dx_1 \int_0^1 dx_2 f_1(x_1, Q) f_2(x_2, Q) \frac{d\hat{\sigma}}{dq_T} + \mathcal{O}\left[\left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^n\right]$$

for q_T « Q transverse-momentum-dependent (TMD) factorisation at fixed logarithmic accuracy is appropriate:

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{TMD}} = \sigma_0 H(Q) \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} F_1(x_1, \mathbf{b}_T, Q, Q^2) F_2(x_2, \mathbf{b}_T, Q, Q^2) + \mathcal{O}\left[\left(\frac{q_T}{Q}\right)^m\right]$$

• Collinear and TMD factorisations may eventually be **matched** to produce accurate results over the full q_T spectrum.

- TMD factorisation introduces two independent *artificial* scales:
 - **•** the **renormalisation scale** μ , originating from UV renormalisation,
 - the **rapidity scale** ζ , originating from the cancellation of rapidity divergencies.
 - The respective **evolution equations** are:

$$\frac{\partial \ln F}{\partial \ln \sqrt{\zeta}} = K(\mu)$$

$$\frac{\partial \ln F}{\partial \ln \mu} = \gamma_F(\alpha_s(\mu)) - \gamma_K(\alpha_s(\mu)) \ln \frac{\sqrt{\zeta}}{\mu}$$
 with: $\frac{\partial K}{\partial \ln \mu} = -\gamma_K(\alpha_s(\mu))$

In addition, for small $b_{\rm T}$, TMDs can be matched onto coll. distributions:

$$F(\mu,\zeta) = C(\mu,\zeta) \otimes f(\mu)$$

The solution is:

$$F(\mu,\zeta) = \exp\left\{K(\mu_0)\ln\frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} + \int_{\mu_0}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_F(\alpha_s(\mu')) - \gamma_K(\alpha_s(\mu'))\ln\frac{\sqrt{\zeta}}{\mu'}\right]\right\}C(\mu_0,\zeta_0)\otimes f(\mu_0)$$

Anomalous dims. and matching funcs. **perturbatively** computable.

- TMD factorisation introduces two independent *artificial* scales:
 - **•** the **renormalisation scale** μ , originating from UV renormalisation,
 - the **rapidity scale** ζ , originating from the cancellation of the rapidity divergencies.
- The respective evolution equations are:

$$\frac{\partial \ln F}{\partial \ln \sqrt{\zeta}} = K(\mu)$$
with: $\frac{\partial K}{\partial \ln \mu} = -\gamma_K(\alpha_s(\mu))$

$$\frac{\partial \ln F}{\partial \ln \mu} = \gamma_F(\alpha_s(\mu)) - \gamma_K(\alpha_s(\mu)) \ln \frac{\sqrt{\zeta}}{\mu}$$
in addition, for small b_T , TMDs can be matched onto coll. distributions:
Matching onto collinear $F(\mu, \zeta) = C(\mu, \zeta) \otimes f(\mu)$
in the solution is:
Evolution (Sudakov) factor
$$\mu_b = b_0 / b_T$$

$$F(\mu, \zeta) = \exp\left\{K(\mu_0) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} + \int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F(\alpha_s(\mu')) - \gamma_K(\alpha_s(\mu')) \ln \frac{\sqrt{\zeta}}{\mu'}\right]\right\} C(\mu_0, \zeta_0) \otimes f(\mu_0)$$
in Anomalous dims, and matching funcs. perturbatively computable.

• When integrating over b_T , **large values of** b_T give rise to low scales in the **non-perturbative** region:

$$rac{d\sigma}{dq_{\mathrm{T}}} \propto \int_{0}^{\infty} db_{\mathrm{T}} \, lpha_{s}^{p} \left(rac{1}{b_{\mathrm{T}}}
ight) \cdots \sim \int_{0}^{Q} dk_{\mathrm{T}} \, lpha_{s}^{p} \left(k_{\mathrm{T}}
ight) \dots$$

Blindly integrating over the full phase space would give a **divergent** result.

$$x, b_T, \mu, \zeta) = \left[\frac{F(x, b_T, \mu, \zeta)}{F(x, b_*(b_T), \mu, \zeta)}\right] F(x, b_*(b_T), \mu, \zeta) \equiv f_{\rm NP}(x, b_T, \zeta) F(x, b_*(b_T), \mu, \zeta)$$

(85)

(85)

• has to go to **one** as b_T goes to zero: reproduce the fully perturbative regime,

• has to go to **zero** as $b_{\rm T}$ becomes large: mimic the Sudakov suppression.

Sottom line: avoidance of the non-perturbative region upon integration n b_T implies the presence of **both** b_* -prescription and f_{NP} .

• Final expression:

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_*; \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b) \qquad :A$$

$$\times \exp\left\{K(b_*; \mu_b) \ln \frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_F}}{\mu'}\right]\right\} \qquad :B$$

$$\times \exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} \qquad :C$$

Final expression:

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_*; \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b) \qquad : A$$

$$\times \exp\left\{K(b_*; \mu_b) \ln \frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_F}}{\mu'}\right]\right\} \qquad : B$$

$$\times \exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} \qquad : C$$

- matching onto the collinear region at $b_{\rm T} \ll 1/\Lambda_{\rm QCD}$,
- factorises as *hard* (perturbative) and *longitudinal* (*i.e.* collinear, non-perturbative).

Final expression:

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_*; \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b) \qquad : A$$

$$\times \exp\left\{K(b_*; \mu_b) \ln \frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_F}}{\mu'}\right]\right\} \qquad : B$$

$$\times \exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} \qquad : C$$

• matching onto the collinear region at $b_{\rm T} \ll 1/\Lambda_{\rm QCD}$,

- factorises as *hard* (perturbative) and *longitudinal* (*i.e.* collinear, non-perturbative).
- CS and RGE evolution,
- evolution to large scales,
- perturbative.

Final expression:

 $F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_{\mathbf{F}}; \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b) \qquad :A$ $\times \exp\left\{K(b_{\mathbf{F}}; \mu_b) \ln \frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_F}}{\mu'}\right]\right\} \qquad :B$ $\times \exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} \qquad :C$

matching onto the collinear region at b_T « 1/Λ_{QCD}.
 factorises as *hard* (perturbative) and *longitudinal* (*i.e.* collinear, non-perturbative).

- avoid the Landau pole through b_* ,
- f_{NP} accounts for the introduction of b_* ,
- $f_{\rm NP}$ is non-perturbative thus **fitted** to data.
- CS and RGE evolution,
- evolution to large scales,
- perturbative.

• TMD factorisation allows us to **resum large logarithms**:

$$\left(rac{d\sigma}{dq_T}
ight)_{ ext{TMD}} \;=\; \sigma_0 H(Q) \int d^2 ext{b}_T e^{i ext{b}_T \cdot ext{q}_T} F_1(x_1, ext{b}_T, Q, Q^2) F_2(x_2, ext{b}_T, Q, Q^2)$$

$$egin{aligned} F_f(x, \mathrm{b}_T, \mu, \zeta) &= \sum_j C_{f/j}(c, b_T; \mu_b, \zeta) \otimes f_j(x, \mu_b) \ & imes & \exp\left\{K(b_T, \mu_b)\lnrac{\sqrt{\zeta}}{\mu_b} + \int_{\mu_b}^{\mu}rac{d\mu'}{\mu'}\left[\gamma_F - \gamma_K\lnrac{\sqrt{\zeta}}{\mu'}
ight]
ight\} \end{aligned}$$

Accuracy	γκ	γ _F	K	$C_{f/j}$	H
LL	α_s	_	_	1	1
NLL	α_s^2	$lpha_s$	$lpha_s$	1	1
NLL'	α_s^2	$lpha_s$	$lpha_s$	α_s	$lpha_s$
N ² LL	$\alpha_s{}^3$	α_s^2	α_s^2	α_s	$lpha_s$
N ² LL'	$\alpha_s{}^3$	α_s^2	α_s^2	α_s^2	α_s^2
N ³ LL	$\alpha_s{}^4$	$\alpha_s{}^3$	$\alpha_s{}^3$	α_s^2	α_s^2
N ³ LL'	α_s^4	$\alpha_s{}^3$	$\alpha_s{}^3$	$\alpha_s{}^3$	$\alpha_s{}^3$

Matching TMI	D and collinear		
• Accurate predictions for all $q_{\rm T}$'s k	by additive matching , order by order		
In perturbation theory, of comme	ar and TMD calculations.		
$\left(\frac{d\sigma}{dq_T}\right)_{\text{matched}} = \left(\frac{d\sigma}{dq_T}\right)_{\text{TN}}$	$+ \left(\frac{d\sigma}{dq_T}\right)_{\text{coll.}} - \left(\frac{d\sigma}{dq_T}\right)_{\text{d.c.}}$		
In order for the match to actually	y take place:		
$\left(\frac{d\sigma}{dq_T}\right)_{\text{TMD}} \xrightarrow{\text{f.o.}} \left(\frac{d\sigma}{dq_T}\right)_{\text{TMD}} \left(\frac{d\sigma}{dq_T}\right)_{\text{f.o.}} \left(\frac{d\sigma}{dq_T}\right)_{\text{f.o.}} \left(\frac{d\sigma}{dq_T}\right)_{\text{f.o.}} \left(\frac{d\sigma}{dq_T}\right)_{\text{TMD}} \left(\frac{d\sigma}{dq_T}\right)_{\text{f.o.}} \left(\frac{d\sigma}{$	$\left(\frac{\sigma}{q_T}\right)_{\mathrm{d.c.}} \xleftarrow{q_T \ll Q} \left(\frac{d\sigma}{dq_T}\right)_{\mathrm{coll.}}$		
Therefore, the "fixed-order" par	ts have to match in the relevant limits:		
Logarithmic accuracy	Minimal f.o. accuracy		
NLL'	α_{s} (LO)		
N ² LL	α_{s} (LO)		
N ² LL'	α_{s^2} (NLO)		
N ³ LL	α_{s^2} (NLO)		
N ³ LL'	α_{s^3} (NNLO)		

Factorising processes

- Processes for which leading-power factorisation has been **proven**:
 - Drell-Yan

 e^+e^- annihilation

 $PP \longrightarrow \ell^{\pm} \ell^{\mp} X$

- **Two PDFs**:
- Lots of data:
 - low-energy: FNAL,
 - 🍯 mid-energy: RHIC,
 - high-energy: Tevatron, LHC.

 $P\ell^{\pm} \longrightarrow \ell^{\pm}h \; X$

- One **PDF** and one **FF**:
- many precise data points:
 - HERMES at DESY,
 - COMPASS at CERN.

- $\ell^{\pm}\ell^{\mp} \to h_1 h_2 X$
- **Two FFs**:
- i di-hadron prod. from:
 - BELLE at KEK,
 - **•** BABAR at SLAC.

A framework for TMD analyses NangaParbat

- Public implementation of TMD factorisation and CSS formalism:
 - **Drell-Yan** with fiducial cuts operative,
 - validating semi-inclusive DIS.
- Main focus on fast and accurate computations aimed at TMD fits:
 - *exploitation of interpolation techniques.*

https://github.com/MapCollaboration/NangaParbat

Nanga Parbat: a TMD fitting framework

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

A framework for TMD analyses NangaParbat

• The numerical computation of a cross section can be reduced to:

$$\left(\frac{d\sigma}{dq_{\mathrm{T}}}\right)_{\mathrm{TMD}} \simeq \sum_{n,\alpha,\tau} W_{n\alpha\tau} f_{\mathrm{NP}}^{(1)}(x_{1}^{(\alpha,\tau)}, b_{\mathrm{T}}^{(n)}, \zeta^{(\tau)}) f_{\mathrm{NP}}^{(2)}(x_{2}^{(\alpha,\tau)}, b_{\mathrm{T}}^{(n)}, \zeta^{(\tau)})$$

- The weights W can be **precomputed** and **stored**:
 - ø perturbative ingredients,
 - non-perturbative ingredients: collinear distributions and Landau pole regularisation,
 - integration over the final-state phase space including fiducial cuts.
- The cross section is thus obtained by "convoluting" the weights with the non-perturbative function(s) finp:
 - **fast computation** that can thus be used during a fit.

Pavia 2019 (PV19): the settings

Functional form of the non-perturbative function:
[Bacchetta et al., JHEP 07 (2020) 117, arXiv:1912.07550]

$$f_{\rm NP}(x, b_T, \zeta) = \left[\frac{1-\lambda}{1+g_1(x)\frac{b_T^2}{4}} + \lambda \exp\left(-g_{1B}(x)\frac{b_T^2}{4}\right)\right] \exp\left[-\left(g_2 + g_{2B}b_T^2\right)\ln\left(\frac{\zeta}{Q_0^2}\right)\frac{b_T^2}{4}\right]$$

$$g_1(x) = \frac{N_1}{x\sigma} \exp\left[-\frac{1}{2\sigma^2} \ln^2\left(\frac{x}{\alpha}\right)\right] \quad \text{and} \quad g_{1B}(x) = \frac{N_{1B}}{x\sigma_B} \exp\left[-\frac{1}{2\sigma_B^2} \ln^2\left(\frac{x}{\alpha_B}\right)\right]$$

- a total of 9 free parameters.
- Complete treatment of the experimental uncertainties:
 - **correlated** systematics (additive and multiplicative) properly treated,
 - uncertainties deriving from **collinear PDFs** also included.
- Fits using all the available perturbative orders: **from NLL to N³LL**.
- **Full integration** over q_T , Q and y when required:
 - no narrow-width nor "middle-point" approximations.
- No ad hoc normalisation:
 - fit both shape and normalisation.
- Monte Carlo method for the experimental error propagation.

PV19 fit: Drell-Yan data

		Experiment	$N_{\rm dat}$	Observable	\sqrt{s} [GeV]	$Q \; [\text{GeV}]$	$y ext{ or } x_F$	Lepton cuts	Ref.
		E605	50	$Ed^{3}\sigma/d^{3}q$	38.8	7 - 18	$x_F = 0.1$	-	[79]
Eived takent		E288 200 GeV	30	$Ed^{3}\sigma/d^{3}q$	19.4	4 - 9	y = 0.40	-	[80]
rixed target		E288 300 GeV	39	$Ed^{3}\sigma/d^{3}q$	23.8	4 - 12	y = 0.21	-	[80]
•		E288 400 GeV	61	$Ed^{3}\sigma/d^{3}q$	27.4	5 - 14	y = 0.03	-	[80]
RHIC		STAR 510	7	$d\sigma/dq_T$	510	73 - 114	y < 1	$\begin{array}{c} p_{T\ell} > 25 \text{ GeV} \\ \eta_{\ell} < 1 \end{array}$	-
		CDF Run I	25	$d\sigma/dq_T$	1800	66 - 116	Inclusive	-	[81]
		CDF Run II	26	$d\sigma/dq_T$	1960	66 - 116	Inclusive	-	[82]
		D0 Run I	12	$d\sigma/dq_T$	1800	75 - 105	Inclusive	-	[83]
revatron		D0 Run II	5	$(1/\sigma)d\sigma/dq_T$	1960	70 - 110	Inclusive	-	[84]
		D0 Run II (μ)	3	$(1/\sigma)d\sigma/dq_T$	1960	65 - 115	y < 1.7	$\begin{array}{c} p_{T\ell} > 15 \text{ GeV} \\ \eta_{\ell} < 1.7 \end{array}$	[85]
		LHCb 7 TeV	7	$d\sigma/dq_T$	7000	60 - 120	2 < y < 4.5	$\begin{array}{l} p_{T\ell} > 20 \text{ GeV} \\ 2 < \eta_{\ell} < 4.5 \end{array}$	[86]
		LHCb 8 TeV	7	$d\sigma/dq_T$	8000	60 - 120	2 < y < 4.5	$p_{T\ell} > 20 \text{ GeV}$ $2 < \eta_{\ell} < 4.5$	[87]
		LHCb 13 TeV	7	$d\sigma/dq_T$	13000	60 - 120	2 < y < 4.5	$p_{T\ell} > 20 \text{ GeV}$ $2 < \eta_{\ell} < 4.5$	[92]
		CMS 7 TeV	4	$(1/\sigma)d\sigma/dq_T$	7000	60 - 120	y < 2.1	$\begin{vmatrix} p_{T\ell} > 20 \text{ GeV} \\ \eta_{\ell} < 2.1 \end{vmatrix}$	[88]
		CMS 8 TeV	4	$(1/\sigma)d\sigma/dq_T$	8000	60 - 120	y < 2.1	$\begin{vmatrix} p_{T\ell} > 15 \text{ GeV} \\ \eta_{\ell} < 2.1 \end{vmatrix}$	[89]
LHC		ATLAS 7 TeV	6 6 6	$(1/\sigma)d\sigma/dq_T$	7000	66 - 116	$\begin{split} y < 1 \\ 1 < y < 2 \\ 2 < y < 2.4 \end{split}$	$\begin{aligned} p_{T\ell} &> 20 \text{ GeV} \\ \eta_\ell &< 2.4 \end{aligned}$	[93]
		ATLAS 8 TeV on-peak	6 6 6 6 6 6	$(1/\sigma)d\sigma/dq_T$	8000	66 - 116	$\begin{split} y < 0.4 \\ 0.4 < y < 0.8 \\ 0.8 < y < 1.2 \\ 1.2 < y < 1.6 \\ 1.6 < y < 2 \\ 2 < y < 2.4 \end{split}$	$p_{T\ell} > 20 \text{ GeV}$ $ \eta_{\ell} < 2.4$	[90]
		ATLAS 8 TeV off-peak	4 8	$(1/\sigma)d\sigma/dq_T$	8000	46 - 66 116 - 150	y < 2.4	$\begin{array}{c} p_{T\ell} > 20 \text{ GeV} \\ \eta_{\ell} < 2.4 \end{array}$	[<mark>90</mark>]
		Total	353	-	-	_	-	-	-

• Only data with $q_T / Q < 0.2$ (TMD factorisation region).

 $q_{
m T} ~[{
m GeV}]$

Experiment		$\chi^2_D/N_{ m dat}$	$\chi^2_\lambda/N_{ m dat}$	$\chi^2/N_{\rm dat}$
	7 GeV < Q < 8 GeV	0.419	0.068	0.487
E605	$8~{\rm GeV} < Q < 9~{\rm GeV}$	0.995	0.034	1.029
	$10.5~{\rm GeV} < Q < 11.5~{\rm GeV}$	0.191	0.137	0.328
	$11.5~{\rm GeV} < Q < 13.5~{\rm GeV}$	0.491	0.284	0.775
	$13.5~{\rm GeV} < Q < 18~{\rm GeV}$	0.491	0.385	0.877
	$4~{\rm GeV} < Q < 5~{\rm GeV}$	0.213	0.649	0.862
	$5~{\rm GeV} < Q < 6~{\rm GeV}$	0.673	0.292	0.965
$E288 \ 200 \ GeV$	$6~{\rm GeV} < Q < 7~{\rm GeV}$	0.133	0.141	0.275
	$7~{\rm GeV} < Q < 8~{\rm GeV}$	0.254	0.014	0.268
	$8~{\rm GeV} < Q < 9~{\rm GeV}$	0.652	0.024	0.676
	$4~{\rm GeV} < Q < 5~{\rm GeV}$	0.231	0.555	0.785
	5 GeV < Q < 6 GeV	0.502	0.204	0.706
E288 300 GeV	$6~{\rm GeV} < Q < 7~{\rm GeV}$	0.315	0.063	0.378
11200 000 Gev	7 GeV < Q < 8 GeV	0.056	0.030	0.086
	8 GeV < Q < 9 GeV	0.530	0.017	0.547
	11 GeV < Q < 12 GeV	1.047	0.167	1.215
	5 GeV < Q < 6 GeV	0.312	0.065	0.377
	6 GeV < Q < 7 GeV	0.100	0.005	0.105
	7 GeV < Q < 8 GeV	0.018	0.011	0.029
E288 400 GeV	8 GeV < Q < 9 GeV	0.437	0.039	0.477
	11 GeV < Q < 12 GeV	0.637	0.036	0.673
	12 GeV < Q < 13 GeV	0.788	0.028	0.816
	13 GeV < Q < 14 GeV	1.064	0.044	1.107
STAR		0.782	0.054	0.836
CDF Run I		0.480	0.058	0.538
CDF Run II		0.959	0.001	0.959
D0 Run I		0.711	0.043	0.753
D0 Run II		1.325	0.612	1.937
D0 Run II (μ)		3.196	0.023	3.218
LHCb 7 TeV		1.069	0.194	1.263
LHCb 8 TeV		0.460	0.075	0.535
LHCb 13 TeV		0.735	0.020	0.755
CMS 7 TeV		2.131	0.000	2.131
CMS 8 TeV		1.405	0.007	1.412
	0 < y < 1	2.581	0.028	2.609
ATLAS 7 TeV	1 < y < 2	4.333	1.032	5.365
	2 < y < 2.4	3.561	0.378	3.939
	0 < y < 0.4	1.924	0.337	2.262
	0.4 < y < 0.8	2.342	0.247	2.590
ATLAS 8 TeV	0.8 < y < 1.2	0.917	0.061	0.978
on-peak	1.2 < y < 1.6	0.912	0.095	1.006
	1.6 < y < 2	0.721	0.092	0.814
	2 < y < 2.4	0.932	0.348	1.280
ATLAS 8 TeV	$46~{\rm GeV} < Q < 66~{\rm GeV}$	2.138	0.745	2.883
off-peak	$116~{\rm GeV} < Q < 150~{\rm GeV}$	0.501	0.003	0.504
Global		0.88	0.14	1.02

i Global χ^2 as a function of the perturbative accuracy:

Order	NLL	NLL'	NNLL	NNLL'	N ³ LL
χ ² / n.d.p.	~20	3.19	1.62	1.07	1.02

Clear perturbative convergence.

Recent results The LHC electroweak precision working group

- *W* **mass** measurement now possible to increasing precision at the LHC, **utilises** $Z q_T$ **spectrum**.
- Necessitates increased accuracy in theory predictions many development in this area.
- Sudakov **double** logarithms ($L = \ln(Q^2/q_T^2)$) are left over from the cancellation of IR divergences.
- At low $q_{\rm T}$, $\alpha_{\rm s}L^2 \sim 1$, perturbative expansion breaks down \Rightarrow **resummation**.

 $\frac{d\sigma}{dq_{\rm T}} \simeq_{q_{\rm T}\to 0} 1 + \alpha_s (L^2 + L + 1) + \alpha_s^2 (L^4 + L^3 + L^2 + L + 1) + \dots$

- Resum these large logs up to given order Possible up to N³LL.
- Many different approaches the goal is to compare them to understand their differences, uncertainties and accuracy.

cern.ch/event/96143 https://indi , ridge,

Recent results

The LHC electroweak precision working group

2. Different Approaches to Resummation

Groups and Codes involved

• q_T resummation	
DYRes/DYTURBO	Camarda et al., '19
reSolve	Coradeschi, T.C., '17
• TMD	
NangaParbat	Bacchetta et al., '19
► arTeMiDe	Scimemi, Vladimirov, '17
• SCET	
SCETLib	Ebert et al. '17
► (CuTe)	Becher et al. '11,'20
Parton Shower-like/Branching	
RadISH	Monni et al. '16,'17
► (PB-TMD)	Martinez et al. '20

Many groups, well spread across the several different approaches.

Thomas Cridge

https://indico.cern.ch/event/96143 Cridge,

Recent results

The LHC electroweak precision working group

2. Different Approaches to Resummation

Groups and Codes involved

Many groups, well spread across the several different approaches.

Thomas Cridge

Recent results

The LHC electroweak precision working group

Small differences and well understood.

Small differences and well understood.

Small differences and well understood.

Recent results

The LHC electroweak precision working group

Benchmark extremely successful!

Conclusions

- **TMD factorisation** *à la* CSS well-established and phenomenologically successful.
- Implementation within NangaParbat:
 - fast \Rightarrow suitable for **TMD fits**,
 - already used for the **PV19** TMD PDF extraction,
 - *currently being extended to analyse SIDIS data and determine TMD FFs,*
 - accurate \Rightarrow state-of-the-art perturbative accuracy (**N³LL**) necessary for precision physics (involved in the LHC electroweak precision working group).
 - Extensive comparisons against other formalisms and codes make it extremely solid.
 - **•** Used for impact studies for the **Electron-Ion Collider**.
- NangaParbat can be employed for a fundamental study of TMDs as non-perturbative objects defined in terms of light-cone operators:
 - *interface to PARTONS being planned.*