Progress towards the charm baryon dipole moments with bent crystals

Andrea Merli, Università degli Studi di Milano & INFN Milano

Join Workshop GDR-QCD/QCD@short distances and STRONG 2020/PARTONS/ FTE@LHC/NLOAccess

3rd June 2021

G. Arduini², L. Bandiera³, S. Bursuk⁴, O.A. Bezshyyko⁵, L. Burmistrov⁴, G. Calderini⁶, G. Cavoto⁷, F. De Benedetti¹, S.P. Fomin^{8,9}, A.S. Fomin², J. Fu^{1,10}, M.A. Giorgi¹¹, V. Guidi^{3,12}, L. Henry^{1,13}, Yu. Ivanov¹⁴, I.V. Kirillin^{8,9}, A. Yu. Korchin^{8,9}, V.A. Kovalchuk^{8,9}, E. Kou⁴, M. Liul^{4,9}, D. Marangotto^{1,10}, F. Martinez Vidal¹³, V. Mascagna^{15,16}, L. Massacrier¹⁷, J. Mazorra de Cos¹³, A. Mazzolari³, A. Merli^{1,10}, D. Mirarchi², A. Natochii^{4,5}, N. Neri^{1,10}, E. Niel⁴, M. Prest^{15,16}, S. Radaelli², P. Robbe⁴, M. Romagnoni^{3,12}, L. Rossi^{2,10}, J. Ruiz Vidal¹³, W. Scandale^{2,4,7}, N.F. Shul'ga^{8,9}, M. Soldani^{15,16}, A. Sytov³, V. Tikhomirov¹⁸, E. Vallazza¹⁵

¹INFN Milano, ²CERN, ³INFN Ferrara, ⁴LAL, ⁵KNU, ⁶LPNHE, ⁷INFN Roma & U. La Sapienza, ⁸KIPT, ⁹KhNU, ¹⁰U. Milano, ¹¹INFN Pisa & U. Pisa, ¹²U. Ferrara, ¹³IFIC-Valencia, ¹⁴PNPI, ¹⁵INFN Bicocca, ¹⁶U. Insubria, ¹⁷IPN, ¹⁸INP & U. Belarusian State

European Research Council Established by the European Commission

Electromagnetic dipole moments

 δ = electric dipole moment (EDM) μ = magnetic dipole moment (MDM)

E B

Classic systems

$$\boldsymbol{\delta} = \int \boldsymbol{r} \rho(\boldsymbol{r}) d^3 r \quad \boldsymbol{\mu} = \int \boldsymbol{r} \times \boldsymbol{j}(\boldsymbol{r}) d^3 r$$

• Quantum systems $\delta = du_{N} - u = gu$

$$d\mu_N \frac{\mathbf{S}}{2} \qquad \boldsymbol{\mu} = g\mu_N \frac{\mathbf{S}}{2}$$

• Hamiltonian

$$H = -\delta \cdot E - \mu \cdot B$$

Time reversal, Parity:
$$\xrightarrow{T} +\delta \cdot E - \mu \cdot B$$
$$\xrightarrow{P} +\delta \cdot E - \mu \cdot B$$

The EDM violates T and P and via CPT theorem, violates CP

T

EDM as a possible solution for baryogenesis

- EDM of fundamental particles from the structure of quarks and gluons, and processes with photon and flavour-diagonal coupling
- A measurement of a heavy baryon EDM is directly sensitive to:

Physics motivation for MDM

- Experimental anchor points for tests of low-energy QCD models, related to non-perturbative QCD dynamics
- Test of baryon substructure
- Measurement of MDM of particles and antiparticles would allow a test of CPT symmetry

Experiment layout

Spin precession in bent crystals

- Firstly predicted by Baryshevky (1979)
- Determine particle gyromagnetic factor from TBMT equation V.L. Lyuboshits, Sov. J. Nucl. Phys. 31 (1980) 509
- $\Phi = \frac{g-2}{2} \gamma \theta_C \quad \begin{cases} \Phi = \text{spin rotation angle} \\ \theta_C = \text{crystal bending angle} \sim 10^{-2} \text{ rad} \\ g = \text{gyromagnetic factor} \\ \gamma = \text{Lorentz boost} \sim 4-5 \cdot 10^2 \end{cases}$

- Before decay the baryons experience a huge electric field in the crystal
- MDM and EDM precession in the limit $\gamma \gg 1$, $d \ll g 2$ EPJC 77 (2017), 181

$$S_x = S_0 \frac{d}{g-2} (\cos \Phi - 1)$$

mit
$$\gamma \gg 1$$
, $a \ll g - 2$
 $y \qquad \Phi \propto MDM$
 $S_x \propto EDM$
 $S_x \propto EDM$
 $S_x \propto EDM$

LHCb detector studies

- Experiment to be installed at z~-1.2m, ~90cm upstream the first VELO station
- The only experiment at LHC instrumented at large η , (2 < η < 5)

- Detailed simulations demonstrated the feasibility of this proposal:
 - Occupancy under control (busy events wrt pp collisions, but low rate ~1% @ 10⁶ p/s)
 - The detector can reconstruct tracks with ~TeV energy, originated ~1/2m upstream the luminous region

Studies for a dedicated detector

- The acceptance of LHCb is limited to $\eta < 5 \ (\theta > 13 \text{ mrad})$
- Aim of a dedicated detector is a further forward acceptance, with a smaller distance target-tracker
- Simulated tracker chip is VeloPix (LHCb upgrade, state-of-the-art pixel asic), with an area of 55x55 µm²

- Small distances -> fake track rate explode, reconstruction efficiency drop
- With the current technology available today, VELO (LHCb) is already at the optimal detector, placed at the optimal position (70-90 cm)
- A new dedicated detector will have to face new challenges (R&D required)

Initial heavy baryon polarisation

- Strong production of baryons: parity is conserved
 - Polarisation transverse to the p-baryon production plane
- Unknown for p-N at $\sqrt{s} \approx 115 \,\text{GeV}$

- Only one polarisation measurement in fixed target exists
- A deeper understanding on how the polarisation arises is still lacking
- In LHCb we have the opportunity to measure the polarisation in SMOG data, where gas is injected in the beam pipe (see Elisabeth's <u>talk</u>)

Target

Tungsten, paired to the bent crystal

- Rate of produced baryons at the target exit saturates with thickness $T \approx 4 \,\mathrm{cm}$
 - Account for baryon decay and absorption (inelastic interactions) within the target
- $T \approx 2 \,\mathrm{cm}$ is a good compromise in terms of yields and detector operation & safety

Charm baryon yields

- Polarisation measured with a full amplitude analysis
- Full amplitude analysis of $\Lambda_c^+ \to pK^-\pi^+$ (BF $\approx 6\%$) provides the same analyser sensitivity S as benchmark $\Lambda_c^+ \to \Delta^{++}K^-$ (BF $\approx 1\%$) —> x6 improvement in statistics

$$\sigma_{pol} = \frac{1}{S\sqrt{N}} \qquad S = \frac{\alpha_{eff}}{\sqrt{3}}$$

Effective (phase-space averaged) parity-violating Λ_c^+ parameter

D.Marangotto PhD thesis

x3 from additional modes containing:

- Long-lived hyperons, most of which can be reconstructed as usual tracks
- A missing neutral pion (unreconstructed)
- Ξ_c^+ baryon with similar yields to Λ_c^+ :
- Lower production rate (70%), smaller BF
- Lifetime twice larger

R&D on crystals

 First prototypes are based on mechanical bender A second generation based on bonding of a crystal on a prefigured substrate with a cylindrical surface of radius 5m is under development

Manufacturing of a crystal compatible with cryo-cooling (~77K) and other requirements also under investigation

See Federico's presentation

Testbeam of long bent crystal prototypes

- Si and Ge long bent crystal were tested on SPS beam (Oct'18) to characterise steering efficiency and precise bending angle
- At 180 GeV $\approx 10\%$ channeling efficiency

Steering efficiency

 Channeling efficiency for stable particles impinging with angle uniformly distributed within ± the acceptance (Lindard) angle

 Germanium @77K promising in terms of overall efficiency at higher momentum

Spectra of channeled particles

- The crystal takes the very forward produced particles (the most energetic) and bent them towards the detector
- Multi-TeV energy spectra for channeled particles

Performances at optimal crystal parameters

- Comparison of key parameters to assess performance for different crystal configurations
- ▶ Estimates valid for 1.37x10¹³ PoT, corresponding to 2 years of data taking

		Si	Ge	Ge@77K	Ge S₂ (larger acceptance)
Crystal	Deflection length [mrad]	16	16	16	7
	Length [cm]	10	10	10	7
Λ_c^+	Average boost factor	573	709	834	855
	Deflected per 1.37x10 ¹³ PoT	181	586	1784	5879
	Sensitivity MDM (x10 ⁻² µℕ)	3.4	1.6	0.8	0.9
	Sensitivity EDM (x10 ⁻¹⁶ ecm)	5.6	2.2	0.9	1.0

• Large gain in deflected Λ_c^+ yields from Si->Ge->Ge@77K

Expected sensitivities

• Ge@77K could already do better than implanting a detector with a larger acceptance (Ge S₂)

- A dedicated experiment could be designed to have may different improvements:
 - Ge@77K
 - Detector with larger acceptance (i.e. lower bending angle for the crystal)
 - ▶ Higher fluxes, i.e. higher number of PoT (10¹⁵)
- -> Improvement in the sensitivity by more than one order of magnitude
- An R&D is required, along with a new installation and instrumentation at IR3

Complementary with SMOG2

- The same system could be used as a fixed target setup
- Tiny crystal acceptance for channeling (~10⁻³/10⁻⁴)
 - Most of the particle are not channeled and could be reconstructed with the downstream detector (LHCb)
- Accumulated statistics (tungsten target with thickness 2cm):

$$\int \mathscr{L}_{pN} = A \int \mathscr{L} = N_{PoT} \frac{\rho N_A}{A[g/\text{mol}]} A\lambda \left(1 - e^{-T/\lambda}\right) \approx 285 \,\text{pb}^{-1} \qquad \int \mathscr{L} \approx 1.5 \,\text{pb}^{-1}$$

 $N_{PoT} = 1.37 \times 10^{13}$ $\rho = 19.3 \text{ g/cm}^3$ $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ $\lambda = 8.87 \text{ cm}$ T = 2.0 cm

- SMOG2 integrated luminosity (from <u>technical proposal</u>):
 - pAr run (18h): ~ 2 nb⁻¹
 - pNe run (84h): 7.6 nb⁻¹
- Complementary with SMOG2:
 - higher statistics
 - different target (solid vs gas)
 - Technically more difficult to change the target material as done with SMOG2

Conclusions

- Progress during last year in the different aspects of the proposal (target, 2nd crystal, detector, analysis and on machine aspects
- With $\approx 1.37 \times 10^{13}$ PoT (≈ 2 years @10⁶ p/s) can perform unique measurements:
 - Dipole moments
 - Production and differential cross-sections in the very forward region
 - Charm baryon polarisation
- This program looks feasible from the point of view of detector performance and machine layout at LHCb during Run3, and would be coherent/complementary with SMOG2
- These results and experience could set the basis for a dedicated experiment at LHC with higher PoT (x100)
 - Form an international collaboration
 - O(10Meuro) to contract a new detector with cutting edge technology pixel tracker, PID system, dipole magnet (~4 Tm), calorimeter, etc.
 - More ambitious physics program, including charm, beauty and au MDM/EDMs

JHEP 03 (2019) 156 PRL 123 (2019) 011801

